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m Applications:
Text summarization. Choose a diverse subset of sentences.
Diverse search results for a search engine (conditional DPPs).
A set of spike times. 2/20



Outline

Basics of DPPs

Properties: conditioning, restriction, complementation, etc.

L-ensembles: normalization, marginalization.

Sampling from a DPP

Dual representation.

m Mainly from

Determinantal point processes for machine learning
Alex Kulesza, Ben Taskar

https://arxiv.org/abs/1207.6083

m Took some slides from Lobato & Ge, 2014.
https://jmhldotorg.files.wordpress.com/2014/02/slidesrcc-dpps.pdf
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Formal definition

m Let Y ={1,..., N} be a fixed ground set.

m A point process P on ) is a probability distribution on 27.
m Let K € RV*Y be a symmetric similarity matrix such that 0 < K < I.
Eigenvalues are in [0, 1].

m P is a DPP if, when Y ~ P, then for every A C Y,
P(ACY) =det(Ka4),
where K4 1= [Kij]i,jeA. Define det(K@) =1.

Y ooog
K — Oood A= {173}
0000 oooo
1234

P(ACY)=P@r0?)=|g g :EE’

m K is called the marginal kernel.
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Negative correlations in DPPs

If A={i,75}, then
Ki Ky
Kji Kj
= KKy — Kij K

P(ACY):‘

—PGEEY)P( €Y) -

2
K-,L].
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Negative correlations in DPPs

If A= {45}, then

Ki Ky
Kji Kj
= KKy — Kij K

=P eY)PUeY)- K.

P(ACY):‘

m Off-diagonal entries determine the negative correlations.

m If K is diagonal, items in Y are independent (Poisson point process).
m If Kj; = /K Kj;, then ¢ and j never appear together in Y.

m Correlations are always negative.

“DPPs cannot represent distributions where elements are more
likely to co-occur than if they were independent.”
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Property 1: conditioning in DPPs
(slide from Lobato & Ge, 2014)

m DPPs are closed under conditioning.

P(AUBCY)
P(ACY)

_ det(K auB)
det(ffA)

= det([K — K\ aK ' Kadp) .-

K
4 - Schur Complement of K 4.

Kaup = det(K aup) =
Kp det(Ka)det(Kp — KpaK ;' Kap) .

P(BCY|ACY)=

= det(Kp — KpaK ;' Kap)
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Restriction, and complement

m Assume Z ~ DPP(K) with ground set ).

Property 2: restriction
m Let AC Y.
m Define Y :=7Zn A.
m Then, Y ~ DPP(K_,).

Same as changing the ground set Y to A.
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Restriction, and complement

m Assume Z ~ DPP(K) with ground set ).

Property 2: restriction
m Let AC Y.
m Define Y :=7Zn A.
m Then, Y ~ DPP(K_,).

Same as changing the ground set Y to A.

Property 3: complement
m Define Y := Y\Z.
m Then, Y ~ DPP(] — K).

That is, P(ANY = 0) = det(K 4) = det(I — Ka).
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Domination, and scaling
m Assume Z ~ DPP(K) with ground set ).

Property 4: domination
If K < K' (ie., K' — K is positive semidefinite), then for any A C ),

det(Ky) < det(K}).

m DPP(A') assigns higher marginal probabilities to every set A.
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Domination, and scaling
m Assume Z ~ DPP(K) with ground set ).

Property 4: domination
If K < K' (ie., K' — K is positive semidefinite), then for any A C ),

det(Ky) < det(K}).

m DPP(A') assigns higher marginal probabilities to every set A.

Property 5: scaling
If K =K' for some 0 <+ < 1, then for A C Y,

det(K4) = vl det(K7).
m DPP(K) generates sample from DPP(K'). Then, delete each item with

probability 1 — v.
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L-ensembles

m An L-ensemble defines a DPP through a real, symmetric matrix L > O:

Pr(Y = Y) « det(Ly).

m Noneed L < I.

m For modeling data, this parameterization is more convenient.
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m An L-ensemble defines a DPP through a real, symmetric matrix L > O:
Pr(Y=Y) o< det(Ly).

m Noneed L < I.

m For modeling data, this parameterization is more convenient.
To get the normalizer,
Theorem (2.1)

For any AC Y,
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L-ensembles

m An L-ensemble defines a DPP through a real, symmetric matrix L > O:
Pr(Y=Y) o< det(Ly).

m Noneed L < I.

m For modeling data, this parameterization is more convenient.
To get the normalizer,
Theorem (2.1)

For any A C Y,

> det(Ly) = det(L + Iy),
ACYCY

where A = Y\ A.
m The normalizer is 3y ¢y det(Ly) = det(L + I). Complexity: O(N?3).
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Geometric interpretation

m Let L= B'B for some B = (By|---|By) € RP*V,

Pr(Y = Y) « det(Ly) = vol>({ B }icv)

Bi’
B* B B; B
CE
B;
By lﬂ!lIIIIIIIIII.“

m Probability determined by the volume spanned by {B;}icy.
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Geometric interpretation

m Let L= B'B for some B = (By|---|By) € RP*V,

Pr(Y = Y) « det(Ly) = vol>({ B }icv)

m Probability determined by the volume spanned by {B;}icy.

m Diverse set — =~ orthogonal vectors — span large volumes.

m [tems with large-magnitude feature vectors (B;) are more likely to
appear.
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Inference: normalization & marginalization

m Assume L=V A,vuv) = VDV,
Normalizer: det(L + I).
m Then,
det(L+ 1) =det(VDVT + VVT)
N
= det(V)det(D + I)det(V') = [[ (An +1).

n=1
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Inference: normalization & marginalization

m Assume L=V A,vuv) = VDV,
Normalizer: det(L + I).
m Then,

det(L+ 1) =det(VDVT + VVT)

N
= det(V)det(D + I)det(V') = [[ (An +1).
n=1
Marginalization: (get P(A CY) from P(Y = Y))
Theorem (2.2)
An L-ensemble s a DPP with marginal kernel
K=I-(L+D)'=LL+1)"
N
_ T T
=vDVT [V(D+1)VT] = P anvn.

n:l
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Sampling from a DPP

mLet L= A,vuv,). Let I =(eq]...|en).

1 J+0
2 forn=1,...,N:

J + Ju{n} with probability 522
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Sampling from a DPP

mLet L= A,vuv,). Let I =(eq]...|en).

2

~ W

J«0

form=1,...

, N:

J « Ju{n} with probability ;2=

V — (Va)nes € R¥XIUI % | J] is the number of items to sample

while | V| > 0:

— 1
1 pi= [k

Seer(vTe?]

An+

= vasr

v VN, IP)
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Sampling from a DPP

mLet L= A,vuv,). Let I =(eq]...|en).

1 J«0
2 forn=1,...,N:
J « Ju{n} with probability ;2=

Ant+
3 V « (Vi)nes € R¥Y*UI % | J| is the number of items to sample
4 while |V| > 0:
N

1 pi= [ Duer (VT = (IV@HIR,. . [V, 9)2)

2 Draw 1 ~ Discrete(p)

3 Y« YU{s}

4

V <« V,, an orthonormal basis for the subspace of V' orthogonal to e;.
(run Gram-Schmidt)

m 4.4: The dimension of V is reduced by 1.
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Sampling from a DPP

mLet L= A,vuv,). Let I =(eq]...|en).

1 J«0
2 forn=1,...,N:
J « Ju{n} with probability ;2=

Ant+
3 V « (Vi)nes € R¥Y*UI % | J| is the number of items to sample
4 while |V| > 0:
N

1 pi= [ Duer (VT = (IV@HIR,. . [V, 9)2)

2 Draw 1 ~ Discrete(p)

3 Y« YU{s}

4

V <« V,, an orthonormal basis for the subspace of V' orthogonal to e;.
(run Gram-Schmidt)

m 4.4: The dimension of V is reduced by 1.

m Runs in time O(Nk®) where k = |J|. Gram-Schmidt costs O(Nk?).
m Eigen-decomposition of L: O(N?3) (only once).
Can be approximated by computing only top k eigenvectors.
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Visualization of the sampling process
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(a) Sampling points on an interval

(b) Sampling points in the plane

m Discrete [0, 1] (2D plane). Show p in step 4.1.

m Diversifying. 13/20



Property 6: cardinality

m Recall L=3]_; Apvnv, and K = 30 s225vpv,).

m Let h, ~ Bernoulli (A +1) hn € {0,1}.
m Then, |Y| =3 h,.

Follows from step 2 of the sampling procedure.
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Property 6: cardinality

m Recall L=3]_; Apvnv, and K = 30 s225vpv,).
m Let h, ~ Bernoulli (A +1) hn € {0,1}.
m Then, |Y| =3 h,.

Follows from step 2 of the sampling procedure.

Consequences
Y| < rank(L) because rank(L) = #nonzero A,.
2 E[|Y]) =0 AMH = tr(K).
s VIV = il s (- wave) = S oty
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Finding the mode

BRI B

" : “

Sndepordont . opesamme T oeewAp
Finding the set Y C Y that maximizes Pr(Y") is NP-hard.
Submodularity: Py, is log-submodular, that is,

log Pr(Y U {i}) —log Pr(Y) > log PL(Y' U {i}) — log PL(Y"),
whenever Y CY' C Y — {i}.

Many results exists for approximately maximizing monotone
submodular functions. However, Py, is highly non-monotone!
In practice, this is not a problem [Kulesza et al., 2012].
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DPP decomposition: quality vs diversity
We can take the notation L = BT B one step further.

Each column B; satisfies B; = ¢;¢;, where

» ¢; € RT is a quality term.

» ¢; € RP, ||#|| = 1 is a vector of diversity features.
S
f""""~"""\
L Q o T Q

We now have Pr(Y) o< [[T;cy ¢7] det(Sy).
The first factor increases with the quality of the items in Y.

The second factor increases with the diversity of the items in Y.
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Dual representation I

Most algorithms require manipulating L through inversion,
eigendecomposition, etc...

When N is very large, directly working with the N x N matrix
L is not efficient.

L Q o T Q

Let B be the D x N matrix with B; = ¢;¢; so that L = BT B.
Instead, we work with the D x D matrix C = BBT.
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Dual representation II

» C and L have the same (non-zero) eigenvalues.
» Their eigenvectors are linearly related.

» Working with C scales as a function of D <« N.
Proposition:

C =BBT = Z)\nvnv

is an eigendecomposition of C' if and only if

D 1 1 T
L=BTB=Y"), BTAn] {BT%Z]
2 [m VY

is an eigendecomposition of L.

m C is sufficient to perform nearly all forms of DPP inference efficiently.
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Inference in the dual form

m Assume L= B'BcRY¥ and C = BB' =22 | \¢, ¥, ¢ RPXP

Normalization:
D
det(L+I) = [[(An + 1) = det(C + I).
n=1
Marginalization:
-
= Recall L= 35 A [£ B9, [£BT¥] -
m So,
D T
An { o { 1 7.
K = B, —B,'V,
J nz:: An+1 [ Ap ?
D
To Te
=gy () ¥n)(B] ¥n),
= An +1 J

which can be computed in O(D?) time.
m Say A € Y such that |A| = k. Then, P(A CY) = det(K4) can be
computed in O(D?k? + k3).
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Other interesting things we did not discuss

m Proofs of all the results.

m Related processes: Poisson point processes, Matern repulsive, random
sequential adsorption.

B Decomposing DPPs into elementary DPPs.

m Random projections approximately preserve volumes. Can be used to
reduce D. Faster.

m Supervised learning with conditional DPPs
P(Y = Y|X) x det(Ly(X)).
m k-DPPs: a distribution over all subsets Y C Y with cardinality k.

m Learning 6 for Ky?
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Questions?

Thank you
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References I

m Some materials from https:
//jmhldotorg.files.wordpress.com/2014/02/slidesrcc-dpps.pdf.
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