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What is a determinantal point process (DPP)?
A distribution over finite subsets of a fixed ground set Y.

� In general, Y can be uncountable.
� Here, we assume Y = f1; 2; : : : ;Ng.

If Y = fa ; b; c; dg and Y � DPP, then we can ask P(fa ; dg � Y).
Parametrized by a similarity matrix K 2 RN�N . Similar items are less
likely to co-occur. Encourage diversity.

Figure 4: A set of points in the plane drawn from a DPP (left), and the same number of
points sampled independently using a Poisson point process (right).

by the DPP. Furthermore, if A = {i, j} is a two-element set, then

P(i, j ∈ Y ) =

∣∣∣∣
Kii Kij

Kji Kjj

∣∣∣∣ (3)

= KiiKjj −KijKji (4)

= P(i ∈ Y )P(j ∈ Y )−K2
ij . (5)

Thus, the off-diagonal elements determine the negative correlations between pairs of elements:
large values of Kij imply that i and j tend not to co-occur.

Equation (5) demonstrates why DPPs are “diversifying”. If we think of the entries of
the marginal kernel as measurements of similarity between pairs of elements in Y, then
highly similar elements are unlikely to appear together. If Kij =

√
KiiKjj , then i and j

are “perfectly similar” and do not appear together almost surely. Conversely, when K is
diagonal there are no correlations and the elements appear independently. Note that DPPs
cannot represent distributions where elements are more likely to co-occur than if they were
independent: correlations are always nonpositive.

Figure 4 shows the difference between sampling a set of points in the plane using a
DPP (with Kij inversely related to the distance between points i and j), which leads to
a relatively uniformly spread set with good coverage, and sampling points independently,
which results in random clumping.

2.1.1 Examples

In this paper, our focus is on using DPPs to model real-world data. However, many
theoretical point processes turn out to be exactly determinantal, which is one of the main
reasons they have received so much recent attention. In this section we briefly describe a few
examples; some of them are quite remarkable on their own, and as a whole they offer some
intuition about the types of distributions that are realizable by DPPs. Technical details for
each example can be found in the accompanying reference.

Descents in random sequences [Borodin et al., 2010] Given a sequence of N random
numbers drawn uniformly and independently from a finite set (say, the digits 0–9), the
locations in the sequence where the current number is less than the previous number form

6

Applications:
� Text summarization. Choose a diverse subset of sentences.
� Diverse search results for a search engine (conditional DPPs).
� A set of spike times. 2/20
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Outline

Basics of DPPs

Properties: conditioning, restriction, complementation, etc.

L-ensembles: normalization, marginalization.

Sampling from a DPP

Dual representation.

Mainly from

Determinantal point processes for machine learning
Alex Kulesza, Ben Taskar
https://arxiv.org/abs/1207.6083

Took some slides from Lobato & Ge, 2014.
https://jmhldotorg.files.wordpress.com/2014/02/slidesrcc-dpps.pdf

3/20

https://arxiv.org/abs/1207.6083
https://jmhldotorg.files.wordpress.com/2014/02/slidesrcc-dpps.pdf


Formal definition

Let Y = f1; : : : ;Ng be a fixed ground set.
A point process P on Y is a probability distribution on 2Y .
Let K 2 RN�N be a symmetric similarity matrix such that 0 � K � I .

� Eigenvalues are in [0; 1].
P is a DPP if, when Y � P, then for every A � Y,

P(A�Y) = det(KA);

where KA := [Kij ]i ;j2A. Define det(K;) = 1.

Formal Definition

A point process P on Y is a probability distribution on 2Y .

P is a DPP if, when Y ∼ P, then for every A ⊆ Y,

P(A ⊆ Y) = det(KA) ,

where K is a similarity matrix index by the elements of Y and
KA ≡ [Ki,j ]i,j∈A restricts K to those entries in A.

We define det(K∅) = 1. K must satisfy 0 � K � I.

4 / 41

K is called the marginal kernel.
4/20
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Negative correlations in DPPs

If A = fi ; j g, then

P(A � Y) =

�����
Kii Kij

Kji Kjj

�����
= KiiKjj �KijKji

= P(i 2 Y)P(j 2 Y)�K 2
ij :

Off-diagonal entries determine the negative correlations.

If K is diagonal, items in Y are independent (Poisson point process).

If Kij =
p
KiiKjj , then i and j never appear together in Y.

Correlations are always negative.

“DPPs cannot represent distributions where elements are more
likely to co-occur than if they were independent.”
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Property 1: conditioning in DPPs
(slide from Lobato & Ge, 2014)

DPPs are closed under conditioning.Conditioning in DPPs

P(B ⊆ Y|A ⊆ Y) =
P(A ∪B ⊆ Y)

P(A ⊆ Y)

=
det(KA∪B)

det(KA)
= det(KB −KBAK

−1
A KAB)

= det([K −K?AK
−1
A KA?]B) .

Schur Complement of KA.

det(KA∪B) =
det(KA)det(KB −KBAK

−1
A KAB) .

DPPs are closed under conditioning!

6 / 41
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Restriction, and complement

Assume Z � DPP(K ) with ground set Y.

Property 2: restriction
Let A� Y.

Define Y := Z \A.

Then, Y � DPP(KA).

Same as changing the ground set Y to A.

Property 3: complement
Define Y := YnZ.

Then, Y � DPP(I �K ):

That is, P(A \Y = ;) = det(KA) = det(I �KA).
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Domination, and scaling

Assume Z � DPP(K ) with ground set Y.

Property 4: domination
If K � K 0 (i.e., K 0 �K is positive semidefinite), then for any A � Y,

det(KA) � det(K 0
A):

DPP(A0) assigns higher marginal probabilities to every set A.

Property 5: scaling
If K = 
K 0 for some 0 � 
 < 1, then for A � Y,

det(KA) = 
jAj det(K 0
A):

DPP(K ) generates sample from DPP(K 0). Then, delete each item with
probability 1� 
.

8/20
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L-ensembles

An L-ensemble defines a DPP through a real, symmetric matrix L � 0:

PL(Y=Y ) / det(LY ):

No need L � I .

For modeling data, this parameterization is more convenient.

To get the normalizer,

Theorem (2.1)
For any A � Y; X

A�Y�Y

det(LY ) = det(L+ IA);

where A = YnA.

The normalizer is
P

Y�Y det(LY ) = det(L+ I ). Complexity: O(N 3).
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Geometric interpretation

Let L = B>B for some B = (B1j � � � jBN ) 2 RD�N .

PL(Y = Y ) / det(LY ) = vol2(fBigi2Y )

Geometric Interpretation

When L is a gram matrix, that is, L = BTB, then

det(LY ) = Vol2({Bi}i∈Y ) ,

where Bi is the i-th column of B, that is, Lij = BT
i Bj .

9 / 41Probability determined by the volume spanned by fBigi2Y .
Diverse set =) � orthogonal vectors =) span large volumes.
Items with large-magnitude feature vectors (Bi ) are more likely to
appear.
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Inference: normalization & marginalization

Assume L =
PN

n=1 �nvnv>n = VDV >:

Normalizer: det(L+ I ).

Then,

det(L+ I ) = det(VDV > +VV >)

= det(V )det(D + I )det(V >) =
NY

n=1
(�n + 1):

Marginalization: (get P(A � Y) from PL(Y = Y ))

Theorem (2.2)
An L-ensemble is a DPP with marginal kernel

K = I � (L+ I )�1 = L(L+ I )�1

= VDV >
h
V (D + I )�1V >

i
=

NX
n=1

�n

�n + 1
vnv>n :
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Sampling from a DPP

Let L =
PN

n=1 �nvnv>n . Let I = (e1j : : : jeN ).

1 J  ;
2 for n = 1; : : : ;N :

� J  J [ fng with probability �n
�n+1

3 V  (vn)n2J 2 R
N�jJ j % jJ j is the number of items to sample

4 while jV j > 0:

1 p :=
h

1
jV j

P
v2V (v>ei )2

iN
i=1

= 1
jV j

�
kV (1; :)k2; : : : ; kV (N ; :)k2

�
2 Draw i � Discrete(p)

3 Y  Y [ fig
4 V  V?; an orthonormal basis for the subspace of V orthogonal to ei .

(run Gram-Schmidt)

4.4: The dimension of V is reduced by 1.
Runs in time O(Nk3) where k = jJ j. Gram-Schmidt costs O(Nk2).
Eigen-decomposition of L: O(N 3) (only once).

� Can be approximated by computing only top k eigenvectors.
12/20
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1
jV j

P
v2V (v>ei )2

iN
i=1

= 1
jV j

�
kV (1; :)k2; : : : ; kV (N ; :)k2

�
2 Draw i � Discrete(p)

3 Y  Y [ fig
4 V  V?; an orthonormal basis for the subspace of V orthogonal to ei .

(run Gram-Schmidt)

4.4: The dimension of V is reduced by 1.
Runs in time O(Nk3) where k = jJ j. Gram-Schmidt costs O(Nk2).
Eigen-decomposition of L: O(N 3) (only once).

� Can be approximated by computing only top k eigenvectors.
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Visualization of the sampling process
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(a) Sampling points on an interval
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(b) Sampling points in the plane

Figure 8: Sampling DPP over one-dimensional (top) and two-dimensional (bottom) particle
positions. Red circles indicate already selected positions. On the bottom, lighter color
corresponds to higher probability. The DPP naturally reduces the probabilities for positions
that are similar to those already selected.

20

Discrete [0; 1] (2D plane). Show p in step 4.1.
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Property 6: cardinality

Recall L =
PN

n=1 �nvnv>n and K =
PN

n=1
�n

�n+1vnv>n .

Let hn � Bernoulli
�

�n
�n+1

�
. hn 2 f0; 1g.

Then, jYj =
PN

n=1 hn .
� Follows from step 2 of the sampling procedure.

Consequences

1 jYj � rank(L) because rank(L) = #nonzero �n .

2 E[jYj] =
PN

n=1
�n

�n1+1 = tr(K ).

3 V[jYj] =
PN

n=1
�n

�n1+1

�
1� �n

�n1+1

�
=
PN

n=1
�n

(�n+1)2
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Finding the modeFinding the Mode

Finding the set Y ⊆ Y that maximizes PL(Y ) is NP-hard.

Submodularity: PL is log-submodular, that is,

logPL(Y ∪ {i})− logPL(Y ) ≥ logPL(Y ′ ∪ {i})− logPL(Y ′) ,

whenever Y ⊆ Y ′ ⊆ Y − {i}.

Many results exists for approximately maximizing monotone
submodular functions. However, PL is highly non-monotone!
In practice, this is not a problem [Kulesza et al., 2012].

16 / 41
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DPP decomposition: quality vs diversityDPP Decomposition: Quality vs Diversity I
We can take the notation L = BTB one step further.

Each column Bi satisfies Bi = qiφi, where

I qi ∈ R+ is a quality term.

I φi ∈ RD, ||φi|| = 1 is a vector of diversity features.

We now have PL(Y ) ∝
[∏

i∈Y q
2
i

]
det(SY ).

The first factor increases with the quality of the items in Y .

The second factor increases with the diversity of the items in Y .
17 / 41
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Dual representation IDual Representation I

Most algorithms require manipulating L through inversion,
eigendecomposition, etc...

When N is very large, directly working with the N ×N matrix
L is not efficient.

Let B be the D ×N matrix with Bi = qiφi so that L = BTB.
Instead, we work with the D ×D matrix C = BBT.

19 / 41

17/20



Dual representation IIDual Representation II

I C and L have the same (non-zero) eigenvalues.

I Their eigenvectors are linearly related.

I Working with C scales as a function of D � N .

Proposition:

C = BBT =
D∑

n=1

λnv̂nv̂
T
n

is an eigendecomposition of C if and only if

L = BTB =
D∑

n=1

λn

[
1√
λn
BTv̂n

] [
1√
λn
BTv̂n

]T

is an eigendecomposition of L.

20 / 41
C is sufficient to perform nearly all forms of DPP inference efficiently.
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Inference in the dual form

Assume L = B>B 2 RN�N and C = BB> =
PD

n=1 �v̂n v̂>n 2 RD�D

Normalization:

det(L+ I ) =
DY

n=1
(�n + 1) = det(C + I ):

Marginalization:

Recall L =
PD

n=1 �n

h
1
�n
B>v̂n

i h
1
�n
B>v̂n

i>
.

So,

Kij =
DX

n=1

�n

�n + 1

�
1
�n

B>
i v̂n

� �
1
�n

B>
j v̂n

�>

= qiqj
DX

n=1

1
�n + 1

(�>i v̂n)(�
>
j v̂n);

which can be computed in O(D2) time.
Say A 2 Y such that jAj = k . Then, P(A � Y) = det(KA) can be
computed in O(D2k2 + k3).
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Other interesting things we did not discuss

Proofs of all the results.

Related processes: Poisson point processes, Matern repulsive, random
sequential adsorption.

Decomposing DPPs into elementary DPPs.

Random projections approximately preserve volumes. Can be used to
reduce D . Faster.

Supervised learning with conditional DPPs
P(Y = Y jX ) / det(LY (X )).

k -DPPs: a distribution over all subsets Y � Y with cardinality k .

Learning � for K�?
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Questions?

Thank you
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