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Summary

Examples are not Enough, Learn to Criticize! Criticism for Interpretability
Been Kim, Rajiv Khanna, Oluwasanmi O. Koyejo
NIPS 2016.

Given a big dataset, want to do 2 things:

1 Summarize: Find typical examples = prototypes. Majorities.

2 Criticize: Find atypical examples that are not covered by the
prototypes. Minorities.

m Many existing works focus on only [1] e.g., K-medoid, set cover.
m Main message: [2] is also important.
m Use kernel MMD as the objective.

(Some slides are stolen from Been Kim.)
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Understanding data through examples
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Maximum Mean Discrepancy (MMD)

m k : a kernel associated with RKHS H s.t. k(z,y) = (¢(z), #(y)) -
m Two sets of samples: X ={z;}7 ; ~ P, Z ={z}"; ~ Q.
m Empirical MMD:

n m 2

1 1
MMD? == ) — — .
(X,Z) H = Z¢(m,) —~ qu(z]) 3

=1 1=1

1 n 2 n m 1 m

= ) Z k(wi,xj) o ZZ k:(o:i,zj) + oo} Z k(zi,zj).
ij=1 =1 =1 ij=1
® Summarization: Choose subset indices S C {1,...,n} to minimize

MMD?(X, Xs). (Cf. kernel herding).
Pick |S| = m points to preserve the moments as defined by ¢(-).
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Proposal: MMD-critic for Prototypes
m Given X = {z;}? ,, define a maximization objective J;(S)

=— Z k(zi, 7)) — MMD?(X, Xs)

1,5=1
|S|ZZk T, T;) |S|2ZZk T, T;)
1=135€S 1€S J€ES
relevancy redundancy

=3 2.1 k(z;, z;) is constant. Added so that J;(f) = 0 (“normalized”).
m Select m, prototypes by (discrete optimization)

Ju(S)

max
SC{l,...,n},|S\§m*
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Optimization Guarantees

Def: F(S) is normalized if F'(0) = 0.
Def: F(S) is monotonic if U CV C {1,...,n} implies F(U) < F(V).
m Def: F(S) is submodular if for all U,V C {1,...,n},

FUUV)+ F(UNnV) < F(U)+ F(V).

Will show that J;(S) is monotonic, submodular under some conditions.
m Then, use greedy forward search. At each iteration ¢,
S¢v1 =St UAar max_ Jp(S: U{u})}.

t+1 t { gue{l,...,n}\St b(St { })}

Theorem (Nemhauser et al. (1978))

If F' 1s normalized, monotonic, submodular, then the greedy approach
achieves at least (1 — e™') max|sj<m, F(S).
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Variational View of MMD

MMD(P, Q) = HEXNp[cp(x)] - Eng[qs(y)]HH

= sup  Ex.p[f(X)] - Ev~qlf(Y)l
FER|IflIL1

m arg sup is the witness function:

f(z) = Exinplk(z, X')] = Eyinglk(z, Y')].

m f(z) > 0 in high density areas of P.
m f(z) < 0 in high density areas of Q.
m Magnitude |f(z)| indicates the density difference at z.

m For our purpose, the empirical witness associated with MMD(X, Xs):
1 & 1
f($) = Z k(xi 2137;) T Z k(xi zj)'
n — S|
1=1 JES
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MMD-critic for Criticisms

m Criticisms of S are points with high magnitude of the witness f

C= L(C) + log det K,
T8 T T(O) +logdet Kec

:Z]f(:cl)\:z Zk T, ;) \S\Zk T, ;)

leC leC JjeSs

m Regularizer logdet K¢ c is high when {z;};cc are diverse.

m L(C) + logdet K¢ c is sub-modular. Greedy optimization.

m The whole procedure gives summary points S, and criticisms C.
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Quality of the Prototypes

m Find prototypes of USPS handwritten digits.

m Gaussian kernel: k(z;,z;) = exp (—7/|z — z;||?).

Use 1-NN (nearest prototype) classification error as the quality
measure.

Let y; € {1,...,10} be the class label of z;.

m Given Z, the nearest prototype classifier predicts y;+, where

i* = argmin||(3) — $(z:)|13, = arg min k(2, 7).
1€S 1€S
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Performance on USPS Data
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m MMD-local: Use exp(—7l|z; — z;||?)[vi = v;]. Supervised kernel to find

the prototypes.

m MMD-global: Use the usual Gaussian kernel.
m PS: Prototype Selection of Bien and Tibshirani, 2011.

m Features = raw pixels.
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Qualitative Measure: Prototype and Criticisms

m Two types of dog breeds from Imagenet.

m Features = image embeddings from He et al., 2015.

Prototypes

- Prototypes

N Lk
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Eval3

Pilot study with human subjects

+ Definition of interpretability: A method is interpretable if a user can
correctly and efficiently predict the method’s results.

* Task: Assign a new data point to one of the groups using 1) all images
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Eval3

Pilot study with human subjects

+ Definition of interpretability: A method is interpretable if a user can
correctly and efficiently predict the method’s results.

* Task: Assign a new data point to one of the groups using 1) all images
2) prototypes 3) prototypes and criticisms 4) small set of randomly
selected images




Eval3

Pilot study with human subjects

100 26
S
75 '~§ 1.95
§ 50 2 1.3
< 3
=
25 £ 065
=
0 0
all prototypes| | prototypes | | randomly all prototypes | | prototypes | | randomly
images and sampled ||images and sampled
criticisms criticisms
Comment:

“[Proto and Criticism Condition resulted in] less confusion from trying to discover

hidden patterns in a ton of images, more clues indicating what features are

important”

n=3
21 questions each
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Some Questions

m What happens when there is no log det Kc c?
m Quantify the effect of the image embeddings from He et al., 2015.
m There are only 3-4 human subjects.

m Possible to do a continuous optimization without selecting a subset?
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Lemma 1: J;(S) Is Linear in K

m Let K € R™*" such that k; = k(z;, z;).
m Prototype objective:

Jp(S) = n|S| ZZk i, T;) |Sl|2 ZZk(a&,xj)

i=1j€S i€S j€S
= e 2 D0l € k(i 3) ~ g Y- D li €SIl € Slk(e )
1=17=1 i=1j=1
:ZZ< ‘QS‘UGS] [’LGS][jES]>
i=1j=1

m Matrix inner product: (A, B) =32, >, aiby.
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Theorem 2.1: Monotone Linear Forms

m Given H € R™" s.t. 0 < hy; < hy where hy := max;; h;; > 0.
m Define £ € {0,1}"*" s.t. ey = [hy = hal.

m Define F(B,S) := (A(S), B).

m Let m :=|S|. Define

_ F(E,SU{u}) - F(E,S)
a(n,m) = F(1—E,9) )

for all w € S.

m If for all 7,7 s.t. [hy # h], for all m € {0,...,n}, hy; < ha(n, m),
then F(H,S) is monotone.

m A similar statement to guarantee that F'(H,S) is submodular.
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(Corollary) Monotone Submodularity for MMD

Assume
1 Kisst., k; >0.
2 kj;=k.>0forallze{l,...,n}
8 K is diagonally dominant i.e., 30, ,; [k; ;| < |k, for all 4.
4 kij < ssronions

Then, J5(S) is monotone submodular.

m For a fixed n, and k; ; = exp (—7||z; — z;||?), there exists 7y such that
(3), (4) are satisfied.

m What if n is very large?

20/20



Questions?

Thank you
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