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3.2 Basics of ExpFam (pp39)

Random vector (Xi,...,X,,) € A™
Sufficient statistics: ¢, : X" — R, stack to ¢
Associated canonical parameters 6 = (0, € T)

[
[
[
m Density

Po(T1, .-, Tm) = exp ((0, ¢(x)) — A(0))

m Convex cumulant

A(f) = log/ N exp(f, ¢(z))v(dx)

Convex parameter space
Q={0ecR| A(H) < +o0}

Minimal: No a € R?\{0} such that 3°_ 7 an¢a(z) is constant.
Overcomplete: Not minimal. There is affine subset of fs associated
with same density. Useful for sum-product. 2/a0



3.1 ExpFam via Maximum Entropy (pp37)

*

= a ax H
p rgmax ()

subject to E,, [0 (X)] = fia

A 1 ¢ :
flo = - E 1 Do (X) forall aeT
1=

The optimal p* takes the form

po(z) o< exp (Z Hagba(a:)) .

a€cl
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3.1 ExpFam via Maximum Entropy (pp37)

Discrete case Lagrangian

L=— ij log pj +Ao (ij - 1) +Z/\a (ij%(X) - [m)
J J a J

H(p) normalisation data

Differentiating

0
L =—logp; + X+ > Aada(X)
apj o

Setting to zero

pj X €xp <Z )\a(ba(‘/r))
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Example 3.1 Ising Model (pp41)

Graph G = (V, E)
Random variables X € {0,1} with node s € V'

= exp (Z Osxs + Z Ostx st — ))

seV (s,t)ER

m Sufficient statistics

o(z) = (zs,5 € Vizszy, (s, 1) € E) € RIVIHIE
m Minimal
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3.4 Mean Parametrisation (pp52)

m Mean parameter
ta = Ep[da(X)] foraeZ

m Feasible means
M = {u eRY | Ip st. Eyla(X)] = pta Vo e z}

(p not necessarily exponential family)
m Discrete case

M={ueR!| =3 o@)p(x) forsome p(z) =0,

rexm
> plz) = 1}

TeEX™

m Minkowski-Weyl

Mz{ueRdle,mzbj VjEJ}
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3.4 Mean Parametrisation (pp52)

(aj, w) =b;

Fig. 3.5 Generic illustration of M for a discrete random variable with |X™| finite. In this
case, the set M is a convex polytope, corresponding to the convex hull of {¢(x) | z € X™}.
By the Minkowski-Weyl theorem, this polytope can also be written as the intersection
of a finite number of half-spaces, each of the form {u € R? | (a;, ) > b;} for some pair
(aj,b;) € R? x R,
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Example 3.8 Ising Mean Parameters (pp55)

Graph G = (V, E)
Random variables X, € {0,1} with node s € V

p9(x) = exp (Z Osws + Z Ost x5 — A(G))

seV (s,t)eE

m Sufficient statistics
gb(l‘) = (-1‘57S c V?-Tsmb (5>t) € E) € RIVIHE‘

Mean parameters
ps =Ep[Xs] =PX;=1] forallseV
pst = Ep[ X Xy = P[(Xs, Xy) = (1,1)] forall (s,t) € E

Feasible means / correlation polytope

M = conv{¢p(z) | z € {0,1}™} 8/40



Example 3.1/3.8 Ising Mean Parameters

m Consider V ={X1, X2}, F={(1,2),(2,1)}
m Feasible means
M = conv { (21,22, 2122) | (1,22) € {0,1}*}
= conv{(0,0,0), (1,0,0), (0,1,0), (1,1,1)}

0 0 1 0
T N 0
o 1 | |"| 7ol
B -1

These four constraints provide an alternative characterization of the
3D polytope illustrated in Figure 3.6.

01,00 H2
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3.5 Properties of A =log [ exp(0, ¢(z))v(dx) (pp62)

Proposition (3.1 Cumulant)

DA
24.0) = Eolga()
%A 0)=E X X) E (X)E (X)
30,08, *) = Eol#a(X) @5 (X)) = Eo[pa(X)]Eslos(X)]

Proof: Take derivative under condition that f and % can be switched.
Need minimal representation for strictly positive definite Hessian.

Proposition (3.2 Forward mapping to mean parameters)

The gradient mapping VA : Q — M is one-to-one iff exponential
representation is minimal.

If overcomplete (non-identifiable), then many-to-one, affine subset of Q2
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Theorem 3.3 (pp65) Moment matching

Theorem (3.3)

In a minimal exponential family, the gradient map V A is onto the
interior of M, denoted by M°, i.e.

VAQ) = M°.

Consequently, for each € M?° , there exists some 0 = 0(u) € Q such
that

Eg[o(X)] = p.
Proof: Use minimal representation, and properties of convex sets

Remarkable: “All mean parameters u € M° that are realizable by some
distribution can be realized by a member of the exponential family.”
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Conjugate Duality: A*(p) := supgeq (1, 0) — A(0)
Theorem (3.4, pp67)
a) Entropy form

A*(/.L) _ _H(pﬁ(,u)) If/J, € M°
+00 ifugd M

b) Variational representation

A(0) == sup (u,0) — A*(p)
HEM

¢) Above supremum attained by

1= Eg[p(X)]

We will need b) later with A*(p) is replaced with a the Bethe entropy*/*°



Conjugate Duality

3.6 Conjugate Duality: Maximum Likelihood and Maximum Entropy 69

(V4)

(VA7)

Fig. 3.8 Idealized illustration of the relation between the set Q of valid canonical param-
eters, and the set M of valid mean parameters. The gradient mappings VA and VA*
associated with the conjugate dual pair (A, A*) provide a bijective mapping between 2 and
the interior M°.
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Conjugate Duality: Bernoulli

X EI {0,1}, o(z) ==z, A(f) =log(l+exp(d)), Q=R
Dua

A () = zgﬂg{@ —log(1 + exp(0))}

m Differentiate, set to zero, get

~ exp(0)
M= T exp(0)

If ne(0,1)
o) = tog (1)

m Substitude into A* gives negative entropy of X with mean
parameter p

A*(p) = plog pp+ (1 — p)log(1 — p)

14/40
m Unbounded otherwise



Summary of Chaper 3

m Exponential family form

m Cannonical and mean parametrisation
m Duality via cumulant and entropy

g(u)

poo (VA"

m Variational representation

_H(pH(u))

— A*(u)

A(0) = sup (u,0) — A™(n)

m In practice

neM

constraint set M is hard to characterise
negative entropy A* lacks and explicit form

m Now: replace M, approximate A*
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Section 4.1: Sum-Product and Bethe Approximation

m Explore sum-product or belief propagation (BP) algorithm, an
inference algorithm for finding marginals.

m Exact on a tree.
m Can be applied to a loopy graph as well, yielding loopy BP.

m Will see that loopy BP attempts to solve the so-called Bethe
variational problem.

Approximate the variational representation

A(0) = sup,e pq (1, 0) — A" ().
First approximation: approximate M
Second approximation: approximate A*(u) (Bethe approximation)

16/40



4.1 Sum-Product and Bethe Approximation (pp. 76)
Notations for graph G = (V, E)

m Domain of X is X3 ={0,1,...rs — 1}. Discrete random variable.

po(x) o exp ZHS(ZCS)—I— Z Ost(xs, zt)

seV (s,t)eE
m 0, is a vector of length .
m Oy(zs) := Ej Os.i15.5(xs) = ) I, is the k™" element of 0, if z, = k.
I,=(0,...,1,...0)" with 1 at the k' position.
m Mean parameter pu; = EI; is the probability vector for z.

= Marginal polytope (Eq. 4.4):
M(G) := {u € R? | 3p with marginals /,Ls(:rs),ust(xs,:rt)}

m M(G) requires global consistency i.e., marginalization of the full

Joint gives Ns(xs) and ,Ust(fzs;xt)'
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4.1.1 A Tree-Based Outer Bound to M(G) (pp. 77)

m M(G) can be written as the intersection of a finite number of
half-spaces (facets).

m Extremely difficult to list these half-space constraints.

m Solution: List only subsets. Obtain a polyhedral outer bound L(G)
on M(G). The first approximation.

e M

7N
N

L(G)

(Misleading picture. The polytope L(G) has fewer facets and more

vertices, but this is difficult to convey in a 2D representation.) a0
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Specification of IL(G) (pp. 78)

m Consider nonnegative 74(xs) and 7g (s, 2¢).

7 plays the same role as p
7 for pseudomarginals.

m Two constraints for L(G):

1 Normalization condition: > 7s(zs) =1
2 Marginalization constraints:

ZTst(xs,l'z/g) = 74(zs) for all x4
a

ZTst(il’;axt) = 1y (x) for all a;

x/

m The two constraints define L(G)
L(G) = {r > 0| both conditions hold} .

m Polytope IL(G) defines a set of locally consistent marginal
distributions.
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Proposition 4.1 M(G) C L(G) (pp. 78-79)

Proposition (4.1)
M(G) C L(G) holds for any graph G. For a tree T', M(T') = L(T).

Proof
m If 4 € M(G), then it must be normalized and satisfy marginalization
conditions. So, € L(G) proving M(G) C L(G).
m For a tree T', need to show L(G) C M(G) by showing
p e L(G) = pe M(G).
m Assume a tree. By the junction tree theorem,

pu(z) = H fs(xs) H M

seV (s,t)EE 'Uls(a:s)ut(lrt)

m By running intersection property of the junction tree, local
consistency implies global consistency.
m So € M(G).
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Example of 7 €L(G)\M(G) (pp. 80)

Consider a simpler example than example 4.1.

3 binary variables: {z1,z9, 23}

Ts(zs) := (0.5,0.5)

0 05
05 0

Tst(Ts, T¢) 1= [
Equivalently, p(zs # ;) = 0.5.
7 1= {75, Tst} ¢, give locally consistent marginals i.e., in L(G).
But, p(z1, 2, 23) = 0 for all configurations.
S0, Y 0y Dow, P(T1,72,73) # T3(x3) for example.
Not globally consistent i.e., not in M(G).
In fact, M(G) is empty (we think..).
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4.1.2 Bethe Entropy Approximation (pp. 81-82) |

m Second approximation (Bethe entropy) that underlies the
sum-product.

m Approximate A* in A(0) = sup,cnq) (1, 0) — A™ ().
m Consider a tree (eq. 4.8)

pule) = [ st ] “5”“"5’“

s€V (s,t)EE Ju(ae)

m Marginal distributions correspond to i under the canonical
overcomplete representation (sufficient statistics given by
indicator functions).
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4.1.2 Bethe Entropy Approximation (pp. 81-82) Il

m Exact entropy for a tree:

HBethe(pu) = A" (N) = Eu [_ logpu($)]
= Z Hy(ps) — Z Lot (ptst)- (1)
seV (s,t)eE

m where

Hs(us) = - Z ,us(xs) logus(xs)
TsEXs

I (,Ufst) = Z Mst (x& $t) IOg
(ws,wt)e-){s X Xy

pst (T, T¢)
ps(zs) pe (1)
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4.1.2 Bethe Entropy Approximation (pp. 81-82) Il

m Bethe entropy approximation: Assume Hpehe in Eq. 1 anyway
even on a general loopy graph.

B Hpethe (Pu) can be evaluated on 7 = {7, 74} that belongs to

L(G).

Singleton and pairwise marginals are properly defined.
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4.1.3 Bethe Variational Problem (BVP)

With the two ingredients
1 Set L(G) of locally consistent marginals (outer bound on M(G)).
2 Bethe entropy approximation 3 .y Hy(jts) — E(si)@; It (pst) to
— A" ().

Approximate variational representation of the log-partition

(exact) A(0) = sup (u,0) — A"(n)
neM(G)

with

(BVP: 4.16) Apethe(6) = max (1,0) + > Hy(r) — > La(st).
TeL(@) seV (s,t)EE

m Solution of BVP admits the same form as the sum-product
algorithm.
m = Sum-product algorithm finds a fixed point of BVP.
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Lagrangian of BVP (pp. 84)

Define constraint functions for L(G)

(normalization) Css(7) :=1 — ZTS(IES)

(marginalization) Cys(xs;7) == Ts(2s) g Tst(Ts, Tt)

m )\, := Lagrange multiplier associated with Css(7) =0

m M\ (xs) := Lagrange multiplier associated with Cys(xs;7) =0

m M\ (xs) is a vector indexed by x5. In continuous case, A\ is a
function.

Lagrangian
‘C(Ta )‘; 9) = <9> T> + HBethe(T) + Z )\ssCss(T)

seV

+ Z Z)\ts(xs)cts(xSST) + ZAst(xt)Cst(xt§7)

(s,t)eE T 26/40



Thm 4.2 (Sum-Product and the Bethe Problem) (pp. 84)

Connection between sum-product and BVP is made precise by

Theorem (4.2)

The sum-product updates are a Lagrangian method for finding a fixed
point of BVP.

1 For any G, any fixed point specifies a pair (7, \*) such that

V. L(T*,\*;0) = 0 (stationary)
VAL(T*,\*;0) = 0 (constraint satisfaction)

2 For a tree, (7%, \*) is unique. Elements of 7* correspond to exact
singleton and pairwise marginal distributions. Moreover, the optimal
value of BVP is equal to A(6) (cumulant function).
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Proof of Theorem 4.2a

m Define Ms(xs) := exp(Mes(xs)).
m Find V. L(7%,A*;6). Equate it to 0. Solve for .

Ts(zs) = kexp(6 H M;s(zs)
teN(s)
Tst(xm mt) =r exp (est(msa xt) + 05 (l‘s) + Ht(xt))

X H Mus .Ts H Mut xs

uwEN (s)\t u€N(t)\s
m Solving for My4(xs) by using these two equations and others gives

Mis(xs) o Z exp (Ost(xs, ) + O4()) H Myt (xt)
Tt ueN (t)\s

which is the familiar sum-product message from z; to .
m ) turns out to be log of messages.
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Proof of Theorem 4.2b (pp. 273)
Theorem (4.2b)

For a tree T, (7%, \*) is unique. Elements of T* correspond to exact
singleton and pairwise marginal distributions. Moreover, the optimal
value of BVP is equal to A(6) (cumulant function).

By Proposition 4.1, L.(T") = M(T').
Hpethe is exact. So, —A* = Hpgethe-
m So there is no approximation in moving from

A(0) = sup (u,0) — A"(n)

HEM(G)
to max (1,0) + ZHS(TS) - Z It (7gt).
TeL(@) seV (s,t)eE
m The value of the optimized BVP is A(6).
m Theorem 3.4(c) implies that the optimum 7* corresponds to the
exact marginal distributions.
m Strict convexity implies that the solution is unique. [ 29/40



Remark 4.1 (pp. 85)

m Nonnegativity of 7 is handled implicitly by logarithmic barriers (in
Hg and ).
m Any optimum 7% > 0 must satisfy the Theorem 4.2a (stationarity).

m For graphical models where all configurations are given strictly
positive mass (ExpFam with finite 6 in particular), the sum-product
messages stay bounded strictly away from zero.

= There is always an optimum 7* > 0.
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4.1.5 Bethe Optima and Reparameterization (pp. 91)

m Recall: the junction tree algorithm takes in a set of potential
functions and returns an alternative factorization of the distribution.
[cee ne(ze)
p(T1m) = cec -1 Ea 212 (pp. 32)
[Ises [ns(xs)]

m Same interpretation for the sum-product.
m Any local optimum of BVP specifies a reparameterization of the
original distribution py.
Proposition (4.3 Reparameterization by Bethe Approximation)

Let 7" = (1}, € V;7k,(s,t) € E) denote any optimum of the BVP
defined by the distribution pg. At the fixed point,

pe@) = s [T 11 Tt (o) (Ea. 4.27)
s€ stEE 8 t
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Comments on the Reparameterization (pp. 92)

Applied to a graph with cycles.

Z(7*) is not 1 in general. Z(7*) =1 for a tree.

Every graph has at least one such reparameterization.

Multiple optima of BVP = multiple reparameterizations.

Possible to derive the approximation error of the sum-product.
Detailed not mentioned in the text.

Difference of exact marginals ps of pg(x) and 7 from the
sum-product.
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Example 4.3 Fooling the Sum-Product Algorithm (pp. 92-93)

m For any pseudomarginal 7 in the interior of L(G), possible to
construct pg for which 7 is a fixed point of the sum-product.

m The text provides an example where messages are initialized to be
uniform distributions.

m Messages do not change with sum-product updates. Already a fixed
point.

m Messages give the same pseudomarginals as 7.

m For any discrete MRF in ExpFam with at most one cycle,
sum-product has a unique fixed point and always converges to it
from any initialization..
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4.1.6 Bethe and Loop Series Expansions (pp. 94)

m Loop series expansions provide an exact representation of the
cumulant function A(6) as a sum of terms.

m The first term is Agethe(€) and higher-order terms obtained by
adding in so-called loop corrections.

m Need some definitions.

m Given an undirected graph G' = (V, E) and ECE, let .
G(E) = (V(E), E) be the induced subgraph associated with E.

m Degree of s € V w.rt. E

dy(E) = |{t e V| (s,t) € E}|.
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Generalized Loop (pp. 95)

m Define a generalized loop to be a subgraph G(E) for which all
nodes s € V have degree ds(E) # 1.

m In other words, either dy(E) = 0 or dy(E) > 2.

4.1 Sum-Product and Bethe Approximation 95

é " i ; Z i
) O O
(a) (®) () (d)

Fig. 4.3 Tllustration of generalized loops. (a) Original graph. (b)—(d) Various generalized
loops associated with the graph in (a). In this particular case, the original graph is a
generalized loop for itself.

m A tree does not have any generalized loops because at least one
node s has ds(F) = 1.
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Proposition 4.4 Loop Series Expansion (pp. 96) |

Proposition (4.4)
Consider a pairwise binary MRF. Let Agehe(0) be the optimized BVP

objective evaluated at a BP fixed point 7. The cumulant A(6) is eqal to
the loop series expansion:

A(0) = Apgethe(0) + log (1 + Y B [[E-~ [ o ds(E)})
p£ECE  s€V
Tst — TsTt

H Bst and Bst == 7_5(1 — 7_5)(1 — Tt)

(spt)eE

m [ defines an edge weight. (3 defines a subgraph weight.
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Proposition 4.4 Loop Series Expansion (pp. 96) Il

Equivalently, can also sum over all subsets of E.

Note the dth central moments of a Bernoulli variable

E, [(Xs - Ts)d] = (1= 75) (—7)d + (1 — 1)

If dy(E) =1 for an s € V (i.e., a tree), the associated term in the
expansion vanishes.

Only generalized loops E lead to nonzero terms in the expansion.

Provide an alternative proof that A(f) = Agethe(6) for a tree.
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Comments on Loop Series Expansion (pp. 96,98)

Computation of full sequence of loop corrections is intractable.

Same problem as in computing A(6) in a loopy graph.

Any fully connected graph with n > 5 has more than 2" generalized
loops.

Can improve approximation to A(6) by accounting for a small set of
loop corrections.

The expansion has a generalization for factor graphs. Ref: [51, 224].
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Summary of Section 4.1

m Sum-product and its connection to Bethe approximation.

m Sum-product tries to solve Bethe variational problem, a relaxed
form of variational representation of A(#):

(BVP: 4.16) Agethe(f) = max (r,0)+ > Hy(rs)— > ILu(tar).
TeL(@) seV (s,t)EE

m At a fixed point 7*, it reparameterize the distribution py

pre (@) = ! H 75 (25) H M = pg(x) (Eq. 4.27)

*
seV (s,t)eE Ts (:ES)Tt (a:t)
m The cumulant A(6) has a loop series expansion.
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4.2 Preface to Kikuchi and Hypertree-based Methods (pp. 98-99)

m Two ways in which BVP is an approximate to the exact variational
principle

1 Only approximate the entropy or —A*.
2 Use outer bound IL(G) instead of marginal polytop M(G)

m The accuracy can be strengthened by improving either one.
m BVP approximation is based on trees.

m Kikuchi and Hypertree-based methods follow the same principle as
BVP by using hypertrees.

A (hyper)edge involves more than two vertices.
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