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3.2 Basics of ExpFam (pp39)

Random vector (X1, . . . ,Xm) ∈ Xm

Sufficient statistics: φα : Xm → R, stack to φ

Associated canonical parameters θ = (θα, α ∈ I)
Density

pθ(x1, . . . , xm) = exp (〈θ, φ(x)〉 −A(θ))

Convex cumulant

A(θ) = log

ˆ

Xm

exp〈θ, φ(x)〉ν(dx)

Convex parameter space

Ω = {θ ∈ R
d | A(θ) < +∞}

Minimal: No a ∈ R
d\{0} such that

∑
α∈I aαφα(x) is constant.

Overcomplete: Not minimal. There is affine subset of θs associated
with same density. Useful for sum-product. 2/40



3.1 ExpFam via Maximum Entropy (pp37)

p∗ := argmax
p∈P

H(p)

subject to Ep [φα(X)] = µ̂α

µ̂α :=
1

n

n∑

i=1

φα(X
i) for all α ∈ I

The optimal p∗ takes the form

pθ(x) ∝ exp

(
∑

α∈I

θαφα(x)

)
.
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3.1 ExpFam via Maximum Entropy (pp37)

Discrete case Lagrangian

L = −
∑

j

pj log pj

︸ ︷︷ ︸
H(p)

+λ0



∑

j

pj − 1




︸ ︷︷ ︸
normalisation

+
∑

α

λα



∑

j

pjφα(X) − µ̂α




︸ ︷︷ ︸
data

Differentiating

∂

∂pj
L = − log pj + λ0 +

∑

α

λαφα(X)

Setting to zero

pj ∝ exp

(
∑

α

λαφα(x)

)
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Example 3.1 Ising Model (pp41)

Graph G = (V,E)

Random variables Xs ∈ {0, 1} with node s ∈ V

pθ(x) = exp



∑

s∈V

θsxs +
∑

(s,t)∈E

θstxsxt −A(θ)




Sufficient statistics

φ(x) = (xs, s ∈ V ;xsxt, (s, t) ∈ E) ∈ R
|V |+|E|

Minimal
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3.4 Mean Parametrisation (pp52)

Mean parameter

µα = Ep[φα(X)] for α ∈ I

Feasible means

M =
{
µ ∈ R

d | ∃p s.t. Ep[φα(X)] = µα ∀α ∈ I
}

(p not necessarily exponential family)
Discrete case

M =
{
µ ∈ R

d | µ =
∑

x∈Xm

φ(x)p(x) for some p(x) ≥ 0,

∑

x∈Xm

p(x) = 1
}

Minkowski-Weyl

M =
{
µ ∈ R

d | 〈aj , µ〉 ≥ bj ∀j ∈ J
}
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3.4 Mean Parametrisation (pp52)

Fig. 3.5 Generic illustration of M for a discrete random variable with |X m| finite. In this
case, the set M is a convex polytope, corresponding to the convex hull of {φ(x) | x ∈ X m}.
By the Minkowski–Weyl theorem, this polytope can also be written as the intersection
of a finite number of half-spaces, each of the form {µ ∈ R

d | 〈aj , µ〉 ≥ bj} for some pair
(aj , bj) ∈ R

d × R.
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Example 3.8 Ising Mean Parameters (pp55)

Graph G = (V,E)
Random variables Xs ∈ {0, 1} with node s ∈ V

pθ(x) = exp



∑

s∈V

θsxs +
∑

(s,t)∈E

θstxsxt −A(θ)




Sufficient statistics

φ(x) = (xs, s ∈ V ;xsxt, (s, t) ∈ E) ∈ R
|V |+|E|

Mean parameters

µs = Ep[Xs] = P [Xs = 1] for all s ∈ V

µst = Ep[XsXt] = P [(Xs,Xt) = (1, 1)] for all (s, t) ∈ E

Feasible means / correlation polytope

M = conv{φ(x) | x ∈ {0, 1}m} 8/40



Example 3.1/3.8 Ising Mean Parameters

Consider V = {X1,X2}, E = {(1, 2), (2, 1)}
Feasible means

M = conv
{
(x1, x2, x1x2) | (x1, x2) ∈ {0, 1}2

}

= conv{(0, 0, 0), (1, 0, 0), (0, 1, 0), (1, 1, 1)}


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
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






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0
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
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

.

These four constraints provide an alternative characterization of the

3D polytope illustrated in Figure 3.6.
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3.5 Properties of A = log
´

exp〈θ, φ(x)〉ν(dx) (pp62)

Proposition (3.1 Cumulant)

∂A

∂θα
(θ) = Eθ[φα(X)]

∂2A

∂θα∂θβ
(θ) = Eθ[φα(X)φβ(X)]− Eθ[φα(X)]Eθ[φβ(X)]

Proof: Take derivative under condition that
´

and ∂
∂θα

can be switched.
Need minimal representation for strictly positive definite Hessian.

Proposition (3.2 Forward mapping to mean parameters)

The gradient mapping ∇A : Ω → M is one-to-one iff exponential
representation is minimal.

If overcomplete (non-identifiable), then many-to-one, affine subset of Ω
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Theorem 3.3 (pp65) Moment matching

Theorem (3.3)

In a minimal exponential family, the gradient map ∇A is onto the
interior of M, denoted by M◦, i.e.

∇A(Ω) = M◦.

Consequently, for each µ ∈ M◦ , there exists some θ = θ(µ) ∈ Ω such
that

Eθ[φ(X)] = µ.

.
Proof: Use minimal representation, and properties of convex sets

Remarkable: “All mean parameters µ ∈ M◦ that are realizable by some
distribution can be realized by a member of the exponential family.”
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Conjugate Duality: A∗(µ) := supθ∈Ω 〈µ, θ〉 −A(θ)

Theorem (3.4, pp67)

a) Entropy form

A∗(µ) =

{
−H(pθ(µ)) if µ ∈ M◦

+∞ if µ 6∈ M

b) Variational representation

A(θ) := sup
µ∈M

〈µ, θ〉 −A∗(µ)

c) Above supremum attained by

µ = Eθ[φ(X)]

We will need b) later with A∗(µ) is replaced with a the Bethe entropy.12/40



Conjugate Duality

3.6 Conjugate Duality: Maximum Likelihood and Maximum Entropy 69

Fig. 3.8 Idealized illustration of the relation between the set Ω of valid canonical param-
eters, and the set M of valid mean parameters. The gradient mappings ∇A and ∇A∗

associated with the conjugate dual pair (A,A∗) provide a bijective mapping between Ω and
the interior M◦.

13/40



Conjugate Duality: Bernoulli

X ∈ {0, 1}, φ(x) = x, A(θ) = log(1 + exp(θ)), Ω = R

Dual
A∗(µ) = sup

θ∈R
{θµ− log(1 + exp(θ))}

Differentiate, set to zero, get

µ =
exp(θ)

1 + exp(θ)

If µ ∈ (0, 1)

θ(µ) = log

(
µ

1− µ

)

Substitude into A∗ gives negative entropy of X with mean
parameter µ

A∗(µ) = µ log µ+ (1− µ) log(1− µ)

Unbounded otherwise
14/40



Summary of Chaper 3

Exponential family form
Cannonical and mean parametrisation
Duality via cumulant and entropy

Variational representation

A(θ) := sup
µ∈M

〈µ, θ〉 −A∗(µ)

In practice
• constraint set M is hard to characterise
• negative entropy A∗ lacks and explicit form

Now: replace M, approximate A∗
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Section 4.1: Sum-Product and Bethe Approximation

Explore sum-product or belief propagation (BP) algorithm, an
inference algorithm for finding marginals.

Exact on a tree.

Can be applied to a loopy graph as well, yielding loopy BP.

Will see that loopy BP attempts to solve the so-called Bethe

variational problem.

• Approximate the variational representation
A(θ) := supµ∈M 〈µ, θ〉 −A∗(µ).

• First approximation: approximate M
• Second approximation: approximate A∗(µ) (Bethe approximation)
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4.1 Sum-Product and Bethe Approximation (pp. 76)

Notations for graph G = (V,E)

Domain of Xs is Xs = {0, 1, . . . rs − 1}. Discrete random variable.

pθ(x) ∝ exp



∑

s∈V

θs(xs) +
∑

(s,t)∈E

θst(xs, xt)




θs is a vector of length rs.
θs(xs) :=

∑
j θs;jIs;j(xs) = θ⊤s Is is the kth element of θs if xs = k.

• Is = (0, . . . , 1, . . . 0)⊤ with 1 at the kth position.

Mean parameter µs = EIs is the probability vector for xs.
Marginal polytope (Eq. 4.4):

M(G) :=
{
µ ∈ R

d | ∃p with marginals µs(xs), µst(xs, xt)
}

M(G) requires global consistency i.e., marginalization of the full
joint gives µs(xs) and µst(xs, xt).
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4.1.1 A Tree-Based Outer Bound to M(G) (pp. 77)

M(G) can be written as the intersection of a finite number of
half-spaces (facets).
Extremely difficult to list these half-space constraints.
Solution: List only subsets. Obtain a polyhedral outer bound L(G)
on M(G). The first approximation.

(Misleading picture. The polytope L(G) has fewer facets and more
vertices, but this is difficult to convey in a 2D representation.)
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Specification of L(G) (pp. 78)

Consider nonnegative τs(xs) and τst(xs, xt).
• τ plays the same role as µ
• τ for pseudomarginals.

Two constraints for L(G):

1 Normalization condition:
∑

xs
τs(xs) = 1

2 Marginalization constraints:
∑

x′

t

τst(xs,x
′
t) = τs(xs) for all xs

∑

x′

s

τst(x
′
s, xt) = τt(xt) for all xt

The two constraints define L(G)

L(G) = {τ ≥ 0 | both conditions hold} .

Polytope L(G) defines a set of locally consistent marginal
distributions. 19/40



Proposition 4.1 M(G) ⊆ L(G) (pp. 78-79)

Proposition (4.1)

M(G) ⊆ L(G) holds for any graph G. For a tree T , M(T ) = L(T ).

Proof

If µ ∈ M(G), then it must be normalized and satisfy marginalization
conditions. So, µ ∈ L(G) proving M(G) ⊆ L(G).
For a tree T , need to show L(G) ⊆ M(G) by showing
µ ∈ L(G) ⇒ µ ∈ M(G).
Assume a tree. By the junction tree theorem,

pµ(x) :=
∏

s∈V

µs(xs)
∏

(s,t)∈E

µst(xs, xt)

µs(xs)µt(xt)
.

By running intersection property of the junction tree, local
consistency implies global consistency.
So µ ∈ M(G).
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Example of τ ∈L(G)\M(G) (pp. 80)

Consider a simpler example than example 4.1.

3 binary variables: {x1, x2, x3}

τs(xs) := (0.5, 0.5)

τst(xs, xt) :=

[
0 0.5
0.5 0

]

Equivalently, p(xs 6= xt) = 0.5.

τ := {τs, τst}s,t give locally consistent marginals i.e., in L(G).

But, p(x1, x2, x3) = 0 for all configurations.

So,
∑

x1

∑
x2

p(x1, x2, x3) 6= τ3(x3) for example.

Not globally consistent i.e., not in M(G).

In fact, M(G) is empty (we think..).
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4.1.2 Bethe Entropy Approximation (pp. 81-82) I

Second approximation (Bethe entropy) that underlies the
sum-product.

Approximate A∗ in A(θ) := supµ∈M(G) 〈µ, θ〉 −A∗(µ).

Consider a tree (eq. 4.8)

pµ(x) :=
∏

s∈V

µs(xs)
∏

(s,t)∈E

µst(xs, xt)

µs(xs)µt(xt)
.

Marginal distributions correspond to µ under the canonical

overcomplete representation (sufficient statistics given by
indicator functions).
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4.1.2 Bethe Entropy Approximation (pp. 81-82) II

Exact entropy for a tree:

HBethe(pµ) = −A∗(µ) = Eµ [− log pµ(x)]

=
∑

s∈V

Hs(µs)−
∑

(s,t)∈E

Ist(µst). (1)

where

Hs(µs) = −
∑

xs∈Xs

µs(xs) log µs(xs)

Ist(µst) =
∑

(xs,xt)∈Xs×Xt

µst(xs, xt) log
µst(xs, xt)

µs(xs)µt(xt)

23/40



4.1.2 Bethe Entropy Approximation (pp. 81-82) III

Bethe entropy approximation: Assume HBethe in Eq. 1 anyway
even on a general loopy graph.

HBethe(pµ) can be evaluated on τ = {τs, τst}s,t that belongs to
L(G).

• Singleton and pairwise marginals are properly defined.
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4.1.3 Bethe Variational Problem (BVP)

With the two ingredients

1 Set L(G) of locally consistent marginals (outer bound on M(G)).
2 Bethe entropy approximation

∑
s∈V Hs(µs)−

∑
(s,t)∈E Ist(µst) to

−A∗(µ).

Approximate variational representation of the log-partition

(exact) A(θ) = sup
µ∈M(G)

〈µ, θ〉 −A∗(µ)

with

(BVP: 4.16) ABethe(θ) = max
τ∈L(G)

〈τ, θ〉+
∑

s∈V

Hs(τs)−
∑

(s,t)∈E

Ist(τst).

Solution of BVP admits the same form as the sum-product
algorithm.
⇒ Sum-product algorithm finds a fixed point of BVP.
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Lagrangian of BVP (pp. 84)

Define constraint functions for L(G)

(normalization) Css(τ) := 1−
∑

xs

τs(xs)

(marginalization) Cts(xs; τ) := τs(xs)−
∑

xt

τst(xs, xt)

λss := Lagrange multiplier associated with Css(τ) = 0
λts(xs) := Lagrange multiplier associated with Cts(xs; τ) = 0
λts(xs) is a vector indexed by xs. In continuous case, λts is a
function.

Lagrangian

L(τ, λ; θ) = 〈θ, τ〉+HBethe(τ) +
∑

s∈V

λssCss(τ)

+
∑

(s,t)∈E

[
∑

xs

λts(xs)Cts(xs; τ) +
∑

xt

λst(xt)Cst(xt; τ)

]
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Thm 4.2 (Sum-Product and the Bethe Problem) (pp. 84)

Connection between sum-product and BVP is made precise by

Theorem (4.2)

The sum-product updates are a Lagrangian method for finding a fixed
point of BVP.

1 For any G, any fixed point specifies a pair (τ∗, λ∗) such that

∇τL(τ
∗, λ∗; θ) = 0 (stationary)

∇λL(τ
∗, λ∗; θ) = 0 (constraint satisfaction)

2 For a tree, (τ∗, λ∗) is unique. Elements of τ∗ correspond to exact

singleton and pairwise marginal distributions. Moreover, the optimal
value of BVP is equal to A(θ) (cumulant function).
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Proof of Theorem 4.2a

Define Mts(xs) := exp(λts(xs)).
Find ∇τL(τ

∗, λ∗; θ). Equate it to 0. Solve for τ .

τs(xs) = κ exp(θs(xs))
∏

t∈N(s)

Mts(xs)

τst(xs, xt) = κ′ exp (θst(xs, xt) + θs(xs) + θt(xt))

×
∏

u∈N(s)\t

Mus(xs)
∏

u∈N(t)\s

Mut(xs).

Solving for Mts(xs) by using these two equations and others gives

Mts(xs) ∝
∑

xt


exp (θst(xs, xt) + θt(xt))

∏

u∈N(t)\s

Mut(xt)




which is the familiar sum-product message from xt to xs.
λ turns out to be log of messages.
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Proof of Theorem 4.2b (pp. 273)

Theorem (4.2b)

For a tree T , (τ∗, λ∗) is unique. Elements of τ∗ correspond to exact

singleton and pairwise marginal distributions. Moreover, the optimal
value of BVP is equal to A(θ) (cumulant function).

By Proposition 4.1, L(T ) = M(T ).
HBethe is exact. So, −A∗ = HBethe.
So there is no approximation in moving from

A(θ) = sup
µ∈M(G)

〈µ, θ〉 −A∗(µ)

to max
τ∈L(G)

〈τ, θ〉+
∑

s∈V

Hs(τs)−
∑

(s,t)∈E

Ist(τst).

The value of the optimized BVP is A(θ).
Theorem 3.4(c) implies that the optimum τ∗ corresponds to the
exact marginal distributions.
Strict convexity implies that the solution is unique. 29/40



Remark 4.1 (pp. 85)

Nonnegativity of τ is handled implicitly by logarithmic barriers (in
Hs and Ist).

Any optimum τ∗ > 0 must satisfy the Theorem 4.2a (stationarity).

For graphical models where all configurations are given strictly
positive mass (ExpFam with finite θ in particular), the sum-product
messages stay bounded strictly away from zero.

• ⇒ There is always an optimum τ∗ > 0.
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4.1.5 Bethe Optima and Reparameterization (pp. 91)

Recall: the junction tree algorithm takes in a set of potential
functions and returns an alternative factorization of the distribution.

p(x1:m) =

∏
C∈C µC(xC)

∏
S∈S [µS(xS)]

d(S)−1
Eq 2.12 (pp. 32)

Same interpretation for the sum-product.
Any local optimum of BVP specifies a reparameterization of the
original distribution pθ.

Proposition (4.3 Reparameterization by Bethe Approximation)

Let τ∗ = (τ∗s , s ∈ V ; τ∗st, (s, t) ∈ E) denote any optimum of the BVP
defined by the distribution pθ. At the fixed point,

pτ∗(x) :=
1

Z(τ∗)

∏

s∈V

τ∗s (xs)
∏

(s,t)∈E

τ∗st(xs, xt)

τ∗s (xs)τ
∗
t (xt)

= pθ(x) (Eq. 4.27)
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Comments on the Reparameterization (pp. 92)

Applied to a graph with cycles.

Z(τ∗) is not 1 in general. Z(τ∗) = 1 for a tree.

Every graph has at least one such reparameterization.

• Multiple optima of BVP ⇒ multiple reparameterizations.

Possible to derive the approximation error of the sum-product.
Detailed not mentioned in the text.

• Difference of exact marginals µs of pθ(x) and τ∗s from the
sum-product.
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Example 4.3 Fooling the Sum-Product Algorithm (pp. 92-93)

For any pseudomarginal τ in the interior of L(G), possible to
construct pθ for which τ is a fixed point of the sum-product.

The text provides an example where messages are initialized to be
uniform distributions.

Messages do not change with sum-product updates. Already a fixed
point.

Messages give the same pseudomarginals as τ .

For any discrete MRF in ExpFam with at most one cycle,
sum-product has a unique fixed point and always converges to it
from any initialization..
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4.1.6 Bethe and Loop Series Expansions (pp. 94)

Loop series expansions provide an exact representation of the
cumulant function A(θ) as a sum of terms.

The first term is ABethe(θ) and higher-order terms obtained by
adding in so-called loop corrections.

Need some definitions.

Given an undirected graph G = (V,E) and Ẽ ⊆ E, let
G(Ẽ) = (V (Ẽ), Ẽ) be the induced subgraph associated with Ẽ.

Degree of s ∈ V w.r.t. Ẽ

ds(Ẽ) :=
∣∣∣{t ∈ V | (s, t) ∈ Ẽ}

∣∣∣ .
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Generalized Loop (pp. 95)

Define a generalized loop to be a subgraph G(Ẽ) for which all
nodes s ∈ V have degree ds(Ẽ) 6= 1.

In other words, either ds(Ẽ) = 0 or ds(Ẽ) ≥ 2.

4.1 Sum-Product and Bethe Approximation 95

Fig. 4.3 Illustration of generalized loops. (a) Original graph. (b)–(d) Various generalized

loops associated with the graph in (a). In this particular case, the original graph is a
generalized loop for itself.

A tree does not have any generalized loops because at least one
node s has ds(Ẽ) = 1.
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Proposition 4.4 Loop Series Expansion (pp. 96) I

Proposition (4.4)

Consider a pairwise binary MRF. Let ABethe(θ) be the optimized BVP
objective evaluated at a BP fixed point τ . The cumulant A(θ) is eqal to
the loop series expansion:

A(θ) = ABethe(θ) + log


1 +

∑

∅6=Ẽ⊆E

β
Ẽ

∏

s∈V

Eτs

[
(Xs − τs)

ds(Ẽ)
]



β
Ẽ
:=

∏

(s,t)∈Ẽ

βst and βst :=
τst − τsτt

τs(1− τs)(1− τt)

βst defines an edge weight. β
Ẽ

defines a subgraph weight.
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Proposition 4.4 Loop Series Expansion (pp. 96) II

Equivalently, can also sum over all subsets of E.

Note the dth central moments of a Bernoulli variable

Eτs

[
(Xs − τs)

d
]
= (1− τs) (−τs)

d + τs(1− τs)
d

If ds(Ẽ) = 1 for an s ∈ V (i.e., a tree), the associated term in the
expansion vanishes.

Only generalized loops Ẽ lead to nonzero terms in the expansion.

Provide an alternative proof that A(θ) = ABethe(θ) for a tree.
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Comments on Loop Series Expansion (pp. 96,98)

Computation of full sequence of loop corrections is intractable.

Same problem as in computing A(θ) in a loopy graph.

Any fully connected graph with n ≥ 5 has more than 2n generalized
loops.

Can improve approximation to A(θ) by accounting for a small set of
loop corrections.

The expansion has a generalization for factor graphs. Ref: [51, 224].
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Summary of Section 4.1

Sum-product and its connection to Bethe approximation.

Sum-product tries to solve Bethe variational problem, a relaxed
form of variational representation of A(θ):

(BVP: 4.16) ABethe(θ) = max
τ∈L(G)

〈τ, θ〉+
∑

s∈V

Hs(τs)−
∑

(s,t)∈E

Ist(τst).

At a fixed point τ∗, it reparameterize the distribution pθ

pτ∗(x) :=
1

Z(τ∗)

∏

s∈V

τ∗s (xs)
∏

(s,t)∈E

τ∗st(xs, xt)

τ∗s (xs)τ
∗
t (xt)

= pθ(x) (Eq. 4.27)

The cumulant A(θ) has a loop series expansion.
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4.2 Preface to Kikuchi and Hypertree-based Methods (pp. 98-99)

Two ways in which BVP is an approximate to the exact variational
principle

1 Only approximate the entropy or −A∗.
2 Use outer bound L(G) instead of marginal polytop M(G)

The accuracy can be strengthened by improving either one.

BVP approximation is based on trees.

Kikuchi and Hypertree-based methods follow the same principle as
BVP by using hypertrees.

• A (hyper)edge involves more than two vertices.
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