Graphical Models, ExpFam,

Variational Inference
Chapter 5: Mean Field Methods




Exponential Family (review)
_____|

p(x]0) = exp ((0, ¢(x)) — A(6))

log/exp
m Variational principle

A(0) = sup (u,0) — A*(p)
HeEM

m Marginal polytope (feasible mean parameters)

M = {u e R | 3¢ s.t. Eg[p(X)] = M}

m Negative entropy: A*(u) = —H(p).
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Exponential Family (review)
_____|

Variational representation (from chapter 3):

A" () = sup (u, 0) — A(0),

0eQ)
A(0) = sup (u,0) — A* ().
peEM
Legendre duality:
VA*(n) =0,
VA0) = pu,

for dually coupled (0, i) i.e., u = Eglp(x)].
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BP, EP and Mean Field Methods

Variational principle:

A0) = sup (b, ) — A" ().

M characterized by exponentially many half-space constraints.
BP and EP approximates A(6) by relaxing M and A*(u).

BP relaxes M to L(G) (locally consistent distributions).

A* relaxed to Aj ;.. (only pairwise interaction).
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BP, EP and Mean Field Methods

Variational principle:

A0) = sup (b, ) — A" ().

M characterized by exponentially many half-space constraints.
BP and EP approximates A(6) by relaxing M and A*(u).
BP relaxes M to L(G) (locally consistent distributions).
A* relaxed to Aj ;.. (only pairwise interaction).
Mean field:

Also approximate the variational principle.

Consider subset of distributions for which M and A* are easy to
characterize e.g., tractable distributions.

Simplest choice = product distributions. Give naive mean field.
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5.1 Tractable Families (p. 128)

ExpFam with sufficient statistics ¢ = (¢, € Z) on cliques of
G=(V,E).

Consider a subgraph FF' = (Vp, Ep) CGie, Vp CV and Ep C E.
Z(F') C Z: the subset of sufficient statistics associated with F'.
{Distributions following F'} = sub-family with subspace of canonical
parameters

QF):={0€Q|0,=0, Va € I\Z(F)}.
Marginal polytope:
Mp(G) = {u € RY | i = Ego(x)], for some 0 € Q(F)} .

M is an inner approximation to M, unlike L(G) in BP.
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Example 5.1: Tractable Subgraphs

m Ising model with G = (V, E). X, € {0,1}.

) X exp (Z Oszs + Z Hstl“sxt) )

seV (St eE‘
O(z) = (2g,8 € V; zomy, (s,1) € E) € {0, 1}VIHEL

m Consider Fyy = (V,0) (completely disconnected subgraph).
m Permissible parameters:

Q(Fo) = {0 eN | fst =0, V(S,t) € E} .

m Densities in the sub-family fully factorized:

= H p(xs|bs) ox exp (Z 93333)

seV seV
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5.2.1 Generic Mean Field Procedure

N
Given 6, the mean field solves

Ap(0) = sup (u,0) — Ap(n)
HEME(G)

where A}, is A* restricted to Mp(G).
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5.2.1 Generic Mean Field Procedure

Given 0, the mean field solves

Ap(0) = sup (u,0) — Ap(n)
REME(G)

where A}, is A* restricted to Mp(G).
Properties of mean field:
A(0) > Ap(0) because

A(0) = sup (u,0) — A*(p) (variational principle)
HEM

> sup (u,0) — A*(n) (mean field)
MEJMF

because Mp C M.
Approximate p with the best match in My in the KL sense.
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KL on Exponential Family Distributions
|

m Consider py1, pg2 € ExpFam where py(x) = exp ({0, ¢(z)) — A(0)) .

D, (0']6%) = [lOg Peii;} Eg [log pg1 (x) — log pg2(z)]
=Ep [(0',0(2)) — A(0") — (0%, 6(x)) + A(6)]
= A(%) — A(6Y) — <u 92 o).
A(6)

m VA@') = p' = Ep[¢(2)]
®m An instance of Bregman

divergence with the convex
+(VA(@®'), 0 —0") function A(6).

[4

92
D(o" || 6%)
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5.2.2 Mean Field and KL Divergence
|

m Let (0, 1) be a dual couple i.e., u = Ey[o(z)].
= Given 6, mean field approximates its couple p’ by

p'~=arg  sup (u,0') — A™(n)
HEMPF(G)

(a)
=arg sup (u,0") — ((n.0) — A(9))
HEMF(G)
=arg sup A(0) + (u,0 —0)
HEMFE(G)
() . / /
= f A0 — A0) — 0 —0
arg nf (0") — A(O) — (u, )
= inf D 0116").
arg nf k(06"

(a): A*(u) = (u,0) — A(6) by variational principle.
(b): Negate. Then add A(¢’), a constant.
B Mean field: Approximate pg: with a distribution in M p(G). Quality
measured by KL. o/18



Example 5.2 Naive Mean Field for Ising Model (p.134) |

® Naive mean field: pg(21.m) := [ ;e P(2s;05).
m Ising model:

Sufficient statistics: (z5, s € V) and (zs2¢, (s,t) € E). Binary z,.
Mean parameters: p; = E[X;] = P[X; = 1] and ps = E[X X¢].

m [y := fully disconnected graph.

Mgy (G) == {p e RVIFIEL 1y = pugpuy, 0 < g < 1 for all s, ¢}

w Dual function: A% (1) = — > ey Hs(s)-
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Example 5.2 Naive Mean Field for Ising Model (p. 134) I

Variational problem:

A(Q) > maﬁ Z esﬂs + Z Hstus,uft + Z HS(HS) ’
w1y | (5 (s,t)EE sEV

strictly concave w.r.t. p1; when {14}, are fixed.
Equate the derivative to O:

Mg < O (95+ Z 951&”15) s (517)

teN(s)

where o(-) is the logistic function.

Coordinate ascent with unique max for every update.
Guaranteed to converge.

Not jointly concave in {1} Sensitive to initialization.
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5.4 Nonconvexity of Mean Field (p. 141)

Claim (Nonconvexity of Mean Field )

If the domain X" is finite, and Mp(G) C M(G), then Mp(G) is not a
convex set.

= Assume X" is finite, and Mp(G) C M(G).

= Assume Mp(G) is convex. "’\ ‘/,L

® Mp(G) contains all the extreme points

pe = ¢(x) of M(G) i.e., point mass ’ ‘
distributions. ,

m Since Mp(G) is convex, it must contain "A’
conv{p(x), x € X™} which is M(G).

B Mp(G) D M(G) is a contradiction. M)
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5.5 Structured Mean Field (p. 142)

m Tractable distributions based on an arbitrary subgraph F.
m Z(F) := subset of indices of suff. stats. associated with F'.
m u(F) = (pa, @ € I(F)), subvector of f.

m M(F) := set of realizable means defined by F.
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5.5 Structured Mean Field (p. 142)

Tractable distributions based on an arbitrary subgraph F.
Z(F) := subset of indices of suff. stats. associated with F'.
p(F) == (pta, o € Z(F')), subvector of p.

M(F') := set of realizable means defined by F'.

Observation:

A3 depends only on p(F'), and not on i, for o € Z(G)\Z(F).

In Ising model, naive MF does not depend on pig;.
s, e determines pg. o = (s,t).

For each a € Z(G)\Z(F),

fa = Ga(pu(F))

for some nonlinear g,.
Ex: pst = pspis = gst(p1, - - - fm) in naive MF on Ising model.
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Nonlinear Constraints on Mean Parameters (p. 143) |
___

m MF variational problem:

max 3 Gust Y Bugeln(F)) ~ Ap(n(F))
(F)eM ﬁGZ(F a€Z(G)\Z(F)

=LA f(u(F))

(recall 63 is param. of the original distribution)
m Derivative for 5 € Z(F):

of

Oga( 7 _ 04p
Opp

—“—(uF) =05+ > bar—(n
a€I(G\Z(F) Opg Opg

where (g, 113) is a dual couple.
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Nonlinear Constraints on Mean Parameters (p. 143) I

m - (u(F)) =0 and rearranging:

Jg
W) <05+ Y O (u(F)). (5.27)
acz(Gnz(F) HP

® Need to adjust all mean parameters that depend on 3 e.g., via
junction tree updates.
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MF Updates in Terms of u(F) (p. 144)

By exploiting duality of (Ar, A7),

() et Y 0 (u(F)). (5.27)

aczionzr)  OMP
becomes
=v=(5.27)=dual couple of u
0Ap 09a
Fy« — |0+ O F 5.28
nalF) = ! > tug s ur) | (529)

a€T(G)\I(F)

which involves only the mean parameters p(F).
With (5.28), we get Ising model naive MF updates when
Gst (1, -y o) = Hspty. See example 5.5.
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Example 5.6 Structured MF for Factorial HMMs (p. 146)
|
m M latent chains independent a priori (a).

m Common observations induces a coupling (by
graph moralization).

m Approximation: decoupling M chains.
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Example 5.6 Structured MF for Factorial HMMs (p. 146)

M latent chains independent a priori (a).

Common observations induces a coupling (by
graph moralization).

Approximation: decoupling M chains.

M latent variables coupled at each time (c).
Assume binary latent. gs, (1) = fisfitfho-

B = (s,t,u).

gp does not depend on pis. ggﬁ =

0
WBE) <O+ D g (u(F). (5.27)
ser@nzr) M

~vs = Bs meaning edge potentials 5 from the
original distribution remains unchanged.

Make sense from the approximation choice.  17/1s



Summary of Mean Field

Inner approximation Mg to M in the variational principle:

A(0) = sup (p,0) — A% ().
peM

Equivalently, approximate j with the best match in Mg in the KL
sense.

Generally nonconvex.

Fast updates for naive mean field.

Structured mean field preserves more interaction with higher
computational cost.
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Factorial HMM Updates

(Stolen from Maneesh's ML course).
Stuctured FHMM

For the FHMM we can factor the chains:

q(si¥ qu (stir)

q"(s{'r) o< exp < log P(si¥, % r)> )
TIa™ (s
= exp <Z Z log P(s'[st 1) + Z log P(x:|s} M)>
t H g
o exp [Zlog P(s{"[s 1) + Z <Iog P(x|s}’ )>H qm,(sm,)}
7

<\og P(x,\s,' )>

SIGCEDRIC

This looks like a standard HMM joint, with a modified likelihood term =- cycle through multiple
forward-backward passes, updating likelihood terms each time.

11 ()
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