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Exponential Family (review)

p(x|θ) = exp (〈θ, φ(x)〉 −A(θ))

A(θ) = log

ˆ

exp(〈θ, φ(x)〉) dx

Variational principle

A(θ) = sup
µ∈M

〈µ, θ〉 −A∗(µ)

Marginal polytope (feasible mean parameters)

M =
{

µ ∈ Rd | ∃q s.t. Eq[φ(X)] = µ
}

Negative entropy: A∗(µ) = −H(p).
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Exponential Family (review)

Variational representation (from chapter 3):

A∗(µ) = sup
θ∈Ω
〈µ, θ〉 −A(θ),

A(θ) = sup
µ∈M

〈µ, θ〉 −A∗(µ).

Legendre duality:

∇A∗(µ) = θ,

∇A(θ) = µ,

for dually coupled (θ, µ) i.e., µ = Eθ[φ(x)].
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BP, EP and Mean Field Methods

Variational principle:

A(θ) = sup
µ∈M

〈µ, θ〉 −A∗(µ).

M characterized by exponentially many half-space constraints.

BP and EP approximates A(θ) by relaxing M and A∗(µ).

BP relaxes M to L(G) (locally consistent distributions).

A∗ relaxed to A∗
Bethe (only pairwise interaction).

Mean field:

Also approximate the variational principle.

Consider subset of distributions for which M and A∗ are easy to
characterize e.g., tractable distributions.

Simplest choice = product distributions. Give naive mean field.
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5.1 Tractable Families (p. 128)

ExpFam with sufficient statistics φ = (φα, α ∈ I) on cliques of
G = (V,E).

Consider a subgraph F = (VF , EF ) ⊆ G i.e., VF ⊆ V and EF ⊆ E.

I(F ) ⊆ I : the subset of sufficient statistics associated with F .

{Distributions following F} = sub-family with subspace of canonical
parameters

Ω(F ) := {θ ∈ Ω | θα = 0, ∀α ∈ I\I(F )} .

Marginal polytope:

MF (G) :=
{

µ ∈ Rd | µ = Eθ[φ(x)], for some θ ∈ Ω(F )
}

.

MF is an inner approximation toM, unlike L(G) in BP.
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Example 5.1: Tractable Subgraphs

Ising model with G = (V,E). Xs ∈ {0, 1}.

pθ(x) ∝ exp




∑

s∈V

θsxs +
∑

(s,t)∈E

θstxsxt



 ,

φ(x) = (xs, s ∈ V ; xsxt, (s, t) ∈ E) ∈ {0, 1}|V |+|E|.

Consider F0 = (V, ∅) (completely disconnected subgraph).
Permissible parameters:

Ω(F0) = {θ ∈ Ω | θst = 0, ∀(s, t) ∈ E} .

Densities in the sub-family fully factorized:

pθ(x) =
∏

s∈V

p(xs|θs) ∝ exp

(
∑

s∈V

θsxs

)
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5.2.1 Generic Mean Field Procedure

Given θ, the mean field solves

AF (θ) = sup
µ∈MF (G)

〈µ, θ〉 −A∗
F (µ)

where A∗
F is A∗ restricted toMF (G).

Properties of mean field:

1 A(θ) ≥ AF (θ) because

A(θ) = sup
µ∈M

〈µ, θ〉 −A∗(µ) (variational principle)

≥ sup
µ∈MF

〈µ, θ〉 −A∗(µ) (mean field)

because MF ⊂M.

2 Approximate µ with the best match inMF in the KL sense.
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KL on Exponential Family Distributions

Consider pθ1 , pθ2 ∈ ExpFam where pθ(x) = exp (〈θ, φ(x)〉 −A(θ)) .

DKL(θ
1‖θ2) = Eθ1

[

log
pθ1(x)

pθ2(x)

]

= Eθ1 [log pθ1(x)− log pθ2(x)]

= Eθ1
[〈
θ1, φ(x)

〉
−A(θ1)−

〈
θ2, φ(x)

〉
+A(θ2)

]

= A(θ2)−A(θ1)−
〈
µ1, θ2 − θ1

〉
.

∇A(θ1) = µ1 = Eθ1 [φ(x)]

An instance of Bregman
divergence with the convex
function A(θ).
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5.2.2 Mean Field and KL Divergence

Let (θ, µ) be a dual couple i.e., µ = Eθ[φ(x)].
Given θ′, mean field approximates its couple µ′ by

µ′ ≈ arg sup
µ∈MF (G)

〈µ, θ′〉 −A∗(µ)

(a)
= arg sup

µ∈MF (G)

〈µ, θ′〉 − (〈µ, θ〉 −A(θ))

= arg sup
µ∈MF (G)

A(θ) + 〈µ, θ′ − θ〉

(b)
= arg inf

µ∈MF (G)
A(θ′)−A(θ) − 〈µ, θ′ − θ〉

= arg inf
µ∈MF (G)

DKL(θ‖θ
′).

(a): A∗(µ) = 〈µ, θ〉 −A(θ) by variational principle.
(b): Negate. Then add A(θ′), a constant.

Mean field: Approximate pθ′ with a distribution in MF (G). Quality
measured by KL.
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Example 5.2 Naive Mean Field for Ising Model (p. 134) I

Naive mean field: pθ(x1:m) :=
∏

s∈V p(xs; θs).

Ising model:

Sufficient statistics: (xs, s ∈ V ) and (xsxt, (s, t) ∈ E). Binary xs.
Mean parameters: µs = E[Xs] = P [Xs = 1] and µst = E[XsXt].

F0 := fully disconnected graph.

MF0
(G) := {µ ∈ R|V |+|E| | µst = µsµt, 0 ≤ µs ≤ 1 for all s, t}

Dual function: A∗
F0
(µ) = −

∑

s∈V Hs(µs).
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Example 5.2 Naive Mean Field for Ising Model (p. 134) II

Variational problem:

A(θ) ≥ max
{µi∈[0,1]}i







∑

s∈V

θsµs +
∑

(s,t)∈E

θstµsµt +
∑

s∈V

Hs(µs)






,

strictly concave w.r.t. µs when {µt}t6=s are fixed.
Equate the derivative to 0:

µs ← σ



θs +
∑

t∈N(s)

θstµt



 , (5.17)

where σ(·) is the logistic function.

Coordinate ascent with unique max for every update.

Guaranteed to converge.

Not jointly concave in {µt}t. Sensitive to initialization.
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5.4 Nonconvexity of Mean Field (p. 141)

Claim (Nonconvexity of Mean Field )

If the domain Xm is finite, andMF (G) (M(G), thenMF (G) is not a
convex set.

Assume Xm is finite, and MF (G) (M(G).

AssumeMF (G) is convex.

MF (G) contains all the extreme points
µx = φ(x) of M(G) i.e., point mass
distributions.

Since MF (G) is convex, it must contain
conv{φ(x), x ∈ Xm} which is M(G).

MF (G) ⊃M(G) is a contradiction.
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5.5 Structured Mean Field (p. 142)

Tractable distributions based on an arbitrary subgraph F .

I(F ) := subset of indices of suff. stats. associated with F .

µ(F ) := (µα, α ∈ I(F )), subvector of µ.

M(F ) := set of realizable means defined by F .

Observation:

A∗
F depends only on µ(F ), and not on µα for α ∈ I(G)\I(F ).

In Ising model, naive MF does not depend on µst.
µs, µt determines µst. α = (s, t).

For each α ∈ I(G)\I(F ),

µα = gα(µ(F ))

for some nonlinear gα.

Ex: µst = µsµt = gst(µ1, . . . , µm) in naive MF on Ising model.
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Nonlinear Constraints on Mean Parameters (p. 143) I

MF variational problem:

max
µ(F )∈M(F )

∑

β∈I(F )

θβµβ +
∑

α∈I(G)\I(F )

θαgα(µ(F )) −A∗
F (µ(F ))

:= max
µ(F )∈M(F )

f(µ(F ))

(recall θβ is param. of the original distribution)

Derivative for β ∈ I(F ):

∂f

∂µβ
(µ(F )) = θβ +

∑

α∈I(G)\I(F )

θα
∂gα

∂µβ
(µ(F )) −

∂A∗
F

∂µβ
(µ(F ))

︸ ︷︷ ︸

:=γβ(F )

where (γβ , µβ) is a dual couple.
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Nonlinear Constraints on Mean Parameters (p. 143) II

∂f
∂µβ

(µ(F )) = 0 and rearranging:

γβ(F )← θβ +
∑

α∈I(G)\I(F )

θα
∂gα

∂µβ
(µ(F )). (5.27)

Need to adjust all mean parameters that depend on γβ e.g., via
junction tree updates.
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MF Updates in Terms of µ(F ) (p. 144)

By exploiting duality of (AF , A
∗
F ),

γβ(F )← θβ +
∑

α∈I(G)\I(F )

θα
∂gα

∂µβ
(µ(F )). (5.27)

becomes

µβ(F )←
∂AF

∂γβ








=γ=(5.27)=dual couple of µ
︷ ︸︸ ︷

θ +
∑

α∈I(G)\I(F )

θα
∂gα

∂µ(F )
(µ(F ))








(5.28)

which involves only the mean parameters µ(F ).

With (5.28), we get Ising model naive MF updates when
gst(µ1, . . . , µm) = µsµt. See example 5.5.
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Example 5.6 Structured MF for Factorial HMMs (p. 146)

M latent chains independent a priori (a).

Common observations induces a coupling (by
graph moralization).

Approximation: decoupling M chains.

M latent variables coupled at each time (c).

Assume binary latent. gstu(µ) = µsµtµu.
β = (s, t, u).

gβ does not depend on µδ.
∂gβ
∂µδ

= 0.

γδ(F )← θδ+
∑

β∈I(G)\I(F )

θβ
∂gβ

∂µδ
(µ(F )). (5.27)

γδ = θδ meaning edge potentials θδ from the
original distribution remains unchanged.

Make sense from the approximation choice. 17/18
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Summary of Mean Field

Inner approximation MF toM in the variational principle:

A(θ) = sup
µ∈M

〈µ, θ〉 −A∗(µ).

Equivalently, approximate µ with the best match inMF in the KL
sense.

Generally nonconvex.

Fast updates for naive mean field.

Structured mean field preserves more interaction with higher
computational cost.
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Factorial HMM Updates

(Stolen from Maneesh’s ML course).
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