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@ Large-scale, efficient neural nets: ~ no theory.

@ Goal: scale kernel methods up.
@ Previous work:
o low-rank approximation, RND features:

@ limited generalization ability,
o rank/#of RND features can be O(sample#).

@ BCD in the dual form: one might have to store all SVs for
testing (=whole training set!).
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Notations: kernel

o Kernel: k:X xX — R, if p: X — H(ilbert) such that

k(a, b) = (#(a), ¢(b)) y - (1)

@ H not necessarily unique, but 3!H = H(k) RKHS:

© generators: k(x,-) € H (¥x € X),
@ reproducing property: (f, k(x,-)), = f(x) (Vf € H).
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RND feature based kernel construction

@ Let

o Po: measure on Q,
° O X =R, ¢, € LQ(Q,]P’).

Then
K(x, x') = /Q 6 (X) b (AP (w)
is a kernel on X.

o Example: for Q = RY, ¢, (x) = e "X we get the translation
invariant kernels (Bochner T.).
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@ Objective: We want to solve (A > 0)

A2 .
R(f)=E I(f = |If
() = B VI + 5 11~ _min
where the /(u,y) € R loss is convex in wu.
@ Examples (/):

o (u,y) =|u—yle: SVMR,

o I(u,y) =In(l+ e~%): logistic regression,

o I(u,y) = (u— y)?: ridge regression.
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Functional gradient

o Convexity of | = 3 subgradient of / w.r.t. u =: I'(u,y).
@ Optimization: (doubly) stochastic gradient descent.

@ Functional gradient [VR(f)]: the gradient of R: H — R at
feH

R(f +€g) = R(f) + e (VR(f),g)qc + O (€?) .

o View: VR(f) € 3 (Riesz repr. T).
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Functional gradient: example-1

o Target (R): x is fixed; R(f) = f(x).
@ Gradient of R:

R(f +eg) = (f + eg)(x) = f(x) + eg(x)
= f(x) +e(k(x,),&)q + 0.

@ Result: VR(f) = k(x,-).
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Functional gradient: example-2

o Target (R): R(f) = ||f|3
@ Gradient of R:

R(f +eg) = ||f +egllc = (f +eg. f + €g)a
= ||F113; +2(F, eg) g + € |1glI3
= ||f]|3 + € 2f, &)gc + O (¢2) .

@ Result: VR(f) = 2f.
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Back to our objective function

@ Objective function: R(f) = E ) [/(F(x), )] + 3 I|fll3
o Gradient:

VR(f) = Epy [I'(F(x), y)k(x, )] + Af.
@ Stochastic gradient: given (x,y) ~ P
(F(x),y)k(x, ) + AF() =2 §() + AF(:).
@ Doubly stochastic gradient: given (x,y) ~ P, w ~ Pq
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Functional gradient approximation: properties

¢ € H, ¢ ¢ H, unbiasedness:

() = I'(f(x), y)k(x,") € X,
C() = 1I'(f(x), ¥)¢uw(x)u(") & I,
() = Eu[C()],
VR(f) = E¢ ) [EC)] + A (),
VR(f) = E(x)Ew [C()] + Af(),
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Functional gradient descent

@ v; > 0: learning rates.

@ Stochastic gradient descent [(fi_1, xi, yi, Vi) — fi]:

fi = fi1 — viVR(fii1: %5, vi)
=11 —’}/,[/,( 1 (Xi) yl) (Xi7') +)\fl 1]
= (L= A ficr = il (fima (%), yi) k(% -)-

@ Doubly stochastic gradient descent [(fi—1, xi, yi,wi, i) — fi]:

fi = fio1 — il (fi-1(xi), i)y (1) P () + Afiza]
(1 — ’}/,)\)ﬁ 1—7i ( [—1(Xi)7yi)¢Wf(Xi)¢Wf(.)‘
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Doubly stochastic gradient based f;

@ Obtained update equation:
fi = (1 = 7iM)ficy = 3l (fim1(xi), Yi) b (Xi) P ()

@ Assuming
fi(1) = Z/BJI?(XN ) = Z [Bj(bwj(xj)] (bwj(') =- Zaj¢wj(')7
j=1 j=1 j=1
our fi_; — f; update (in terms of «;j-s) is
o = =il (fim1(xi); ¥i) b, (Xi),
aj = (1—’}/,')\)Oéj (j: 1,...,f—1).
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Algorithm: Training

o Given {(xi,yi)}t_1 [(xi,yi) ~ P] compute {a;}!_;.
@ The RND number generation (= wj) is “cached” by seed i.

Algorithm 1 Train. (P,/,\) = {a}!_;.
fori=1,...,tdo
Sample (xj,yi) ~ P.
Sample w; € Pq using seed i.
f(x;) = Predict(x;, {aj};;}).
aj = =il (f(xi), ¥i) Pu; (xi)-
aj:(l—y,-)\)aj (jZ].,...,i—].).
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Algorithm: Predict

@ Predict using the same seeds as in training =

@ There is no need to store w;-s.

Algorithm 2 Predict. (x,{ai}f_;) = f(x).
Initialization: 7(x) = 0.
fori=1,...,tdo

Sample w; € Pq using seed |.
f(x) = f(x) + aidw, (x).
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Theoretical guarantees: conditions

o df, = argmingcqc R(f).
@ /: R xR — R Lipschitz continuous in u: 3L such that

H(u,y)—I(d,y)| < Llu—1d| (Vu,d,y €R).

@ Bounded /": 3B, such that |I'(fi(x;),yi)| < By.
@ Bounded kernel, RND feature: 3B, By such that

k(x,x") < Bi (¥x,x" € X),
|0 ()P (X)] < By (Vx, X' € X,w € Q).

Example (Gaussian k): By =1, By = 2.
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Theoretical guarantees: in human-readable format

Let i = ¢ with 6 > 0, Dt = {(x;, yi)}io;, wi = {wi}h ;.

@ Convergence to the optimal function: for any x € X

C
Epret |[fern(x) = A()P| < =5
C
frr1(x) — f(X)]? 2 Tz (with high probability).

@ Generalization error (risk): let Riue = E(x \y [/(f(x),y)],

Rirve(fe+1) — Rirue(fi) 3 (with high probability).

Sl-
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High-level proof idea

Recall the f;-update, and define h; as

fer1(t) = fo = 2elGe() + ARG =D aGi(), (£>1), A() =0,
i=1

at=—v [ =N,

j=i+1

hea (o) = Z ai&i(-) = he = l&e() + Ae()] (¢>1), () =0,
i=1
Since &i(-) € K, hy € H (Vt > 0)!

Zoltdn Szabé Scalable Kernel Methods via Doubly Stochastic Gradients



High-level proof idea: f; 1 — f. through h;

frr1(x) = £()[? < 2/fir1(x) = her1 ()2 +2 | hes1 — £ 5 B -

~
random functions random data
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High-level proof idea: f; 1 — f. through h;

[fry1(x) = OO = [fr1(x) = hera(x) + hega(x) — f(x)?

<2 [[frg1(x) = hey1 () + |heya(x) — £(x)1%]
hep1(x) = L0012 = [ ey, k(%)) g0 = (B k() g |2

= [ {her1 — fus k(x, ) g |2

= [Ihes1 — Ellac KO ol

= [[he+1 — f*”%{ (k(x,), k(x, )9

= || hey1 — £llFc k(x, %)

< ||he1 — fill5c Bk =
|fep1(x) = A0 < 2fei1(x) = heya ()P +2 | hes — £, B

~
random functions random data
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High-level proof idea

@ Tricky part (due to the random functions, our focus):

[Fer1(x) = hera (x)[%.
@ Second term: stoch. approximation in RKHS (“standard”).
By the definitions of fi11 and hyy:

t

fer1(x) = hes1(x) = D allGi(x) = &)1 = ) Vilx).
i=1

i=1

{Vi(x)}i is not i.i.d. (see ai, f;), but “almost” = Concentration.
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Martingal, martingal difference

Mo, M1, My, ... is martingal if

E[‘M"H < 00, (Vn),
E[Mni1|Mp, ..., Mi] = M,, (¥n). &
E[Mpi1 — Mp|M,, ..., Mi] =0, (¥n).

M, =37, V. Example: random walk.
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Martingal, martingal difference

Mo, M1, My, ... is martingal if

E[‘M"H < 00, (Vn),
E[Mni1|Mp, ..., Mi] = M,, (¥n). &
E[Mpi1 — Mp|M,, ..., Mi] =0, (¥n).

Vp(= M, — Mp_1) is martingal difference if

]EH Vn|] < 0,
E[Vy|Vo1,...] = 0.

Equivalently, M, = > " ; V;. Example: random walk.
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Azuma-Hoeffding inequality

Let {V;}; be a bounded martingal difference sequence (|Vi| < ¢;).
Then Ve >0
]ID (

t
Vi
i=1

2

> e) <2 T,

Let V;(x) = al[¢i(x) — &(x)] (x: fixed). Vi(x) is
© bounded:

1Gi(x) = &G = |I1(fi(xi), yidk(xi, x) = ' (£i(x3), i) b (xi) ooy (%))
< 1), yi) | [T (xi x)| =+ 1wy (x3) by (x)]]
< B/(Bk + B¢) =
Vil < |ay|Bi(Bk + Bg) =: ci.

@ mart. difference: E[V;(x)|Vi—1(x),...] = 0 (< unbiasedness).
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Azuma-Hoeffding inequality applied to {Vi(x)};

E[‘ft-l-l( ) — her1(x > e | de

:/p
0

o0 _ 2¢ t
/ 2 i de= E c?
i=1

0

using with Z > 0 (Fz: cdf of Z)
E[Z] = / 1 - Fz(z)dz,
0

t &
IP’( f Ze) 2e T,
i=1
o0 2¢ 1 €00
/ cde—2[——e c] =c.
0 2 e=0

Zoltdn Szabé Scalable Kernel Methods via Doubly Stochastic Gradients




o Thus, E [|fiy1(x) — her1(x)[?] < XoF 4 2, where

t
¢ =lajlBi(Bc+ Bs),  ap=—v [] (1—A).
j=i+1
@ Freedom in the choice of ~;!
o Ify; = 9%0, where O € (1,2) UZ™, then (induction) |a}| < %

@ In this case

t t
; 6% 62
2 —
2= m=%

i=

2
B [1ea(6) ~ A (O] < [B1(Be + BPS = 0 (1)
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Error due to random data: E ||| h; — f*”i(

@ Three gradient terms:

8t := &t + Ahe = I'(fe(xe), ye)k(xe, -) + Ahe,
8t = é\t + Ahg = I'(he(xe), ye)k(xe, -) + Ahy,
gt = E[gt] = E[/,(ht(Xt),yt)k(Xt, )] + )\ht
@ By the definition of hyt1: hey1 = he — yege (82> 1)} =

@ Recursion to Ap1 = ||hes1 — f*||:2}c and to its expectation
e =E[A] =E [||ht - f*||§(] This gives e; = O (1), similarly.
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Generalization error

Rerwe(fe) = Rurue(£) = Eqsy) [1(Fr1(0), )] = Egsoy) [(E (), )]
= E(X,y) [/(ft+1(x),y) - /(f*(X),y)]
< E(xy) [L]fer1(x) — f(x)]]
= LE«|(fe1(x) — fi(x)]
= LB () — £0OR = Llfes — ol

Similarly to the previous proof:

[fosr — full3 < et llfesr — hesal + e | hepr — £l3
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Numerical experiences

@ Problems: SVM, ridge regression, logistic regression.
@ Baselines:

@ online kernel algorithms (NORMA, SDCA, Pegasos).
o deep learning heuristics.

@ Experience:

@ Similar performance, less computation/memory.
@ Mini-batching is useful.
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Thank you for the attention!
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Subgradient of a convex function

@ Let f: U — R be a convex function (U: convex). A vector v
is called a subgradient of f at xp if

f(x) —f(xo) > (v,x —x0) (Vx € U).

@ Of(x0): Non-empty, convex, compact set.
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