Scalable Kernel Methods via Doubly Stochastic Gradients

Bo Dai, Bo Xie, Niao He, Yingyu Liang, Anant Raj, Maria-Florina Balcan, Le Song. NIPS-2014

Zoltán Szabó

Machine Learning Journal Club, Gatsby
October 20, 2014

Outline

- Motivation.
- Notations, objective.
- Algorithm.
- Error bounds.
- Numerical experiences.

Motivation

- Large-scale, efficient neural nets: \approx no theory.
- Goal: scale kernel methods up.
- Previous work:
 - low-rank approximation, RND features:
 - limited generalization ability,
 - rank/#of RND features can be O(sample#).
 - BCD in the dual form: one might have to store all SVs for testing (=whole training set!).

Notations: kernel

• Kernel: $k: \mathcal{X} \times \mathcal{X} \to \mathbb{R}$, if $\exists \varphi: \mathcal{X} \to H(\mathsf{ilbert})$ such that

$$k(a,b) = \langle \varphi(a), \varphi(b) \rangle_{H}.$$
 (1)

- *H* not necessarily unique, but $\exists ! H = H(k)$ RKHS:
 - **1** generators: $k(x, \cdot) \in \mathcal{H} \ (\forall x \in \mathcal{X})$,
 - **2** reproducing property: $\langle f, k(x, \cdot) \rangle_H = f(x) \ (\forall f \in H)$.

RND feature based kernel construction

- Let
 - \mathbb{P}_{Ω} : measure on Ω ,
 - $\phi_{\omega}: \mathcal{X} \to \mathbb{R}, \ \phi_{\omega} \in L^2(\Omega, \mathbb{P}).$

Then

$$k(x, x') = \int_{\Omega} \phi_{\omega}(x) \phi_{\omega}(x') d\mathbb{P}_{\Omega}(\omega)$$

is a kernel on \mathfrak{X} .

• Example: for $\Omega = \mathbb{R}^d$, $\phi_\omega(x) = e^{i\omega^T x}$, we get the translation invariant kernels (Bochner T.).

Problem

• Objective: We want to solve $(\lambda > 0)$

$$R(f) = \mathbb{E}_{(x,y)}\left[I(f(x),y)\right] + \frac{\lambda}{2} \|f\|_{\mathcal{H}}^2 \to \min_{f \in \mathcal{H} = \mathcal{H}(k)},$$

where the $I(u, y) \in \mathbb{R}$ loss is convex in u.

- Examples (1):
 - $I(u, y) = |u y|_{\epsilon}$: SVMR,
 - $I(u, y) = \ln(1 + e^{-uy})$: logistic regression,
 - $I(u, y) = (u y)^2$: ridge regression.

Functional gradient

- Convexity of $I \Rightarrow \exists$ subgradient of I w.r.t. u =: I'(u, y).
- Optimization: (doubly) stochastic gradient descent.
- Functional gradient $[\nabla R(f)]$: the gradient of $R:\mathcal{H}\to\mathbb{R}$ at $f\in\mathcal{H}$

$$R(f + \epsilon g) = R(f) + \epsilon \langle \nabla R(f), g \rangle_{\mathfrak{H}} + \mathcal{O}(\epsilon^{2}).$$

• View: $\nabla R(f) \in \mathcal{H}$ (Riesz repr. T).

Functional gradient: example-1

- Target (R): x is fixed; R(f) = f(x).
- Gradient of R:

$$R(f + \epsilon g) = (f + \epsilon g)(x) = f(x) + \epsilon g(x)$$
$$= f(x) + \epsilon \langle k(x, \cdot), g \rangle_{\mathcal{H}} + 0.$$

• Result: $\nabla R(f) = k(x, \cdot)$.

Functional gradient: example-2

- Target (R): $R(f) = ||f||_{\mathcal{H}}^2$.
- Gradient of R:

$$R(f + \epsilon g) = \|f + \epsilon g\|_{\mathcal{H}}^2 = \langle f + \epsilon g, f + \epsilon g \rangle_{\mathcal{H}}$$
$$= \|f\|_{\mathcal{H}}^2 + 2 \langle f, \epsilon g \rangle_{\mathcal{H}} + \epsilon^2 \|g\|_{\mathcal{H}}^2$$
$$= \|f\|_{\mathcal{H}}^2 + \epsilon \langle 2f, g \rangle_{\mathcal{H}} + 0 (\epsilon^2).$$

• Result: $\nabla R(f) = 2f$.

Back to our objective function

- Objective function: $R(f) = \mathbb{E}_{(x,y)}[I(f(x),y)] + \frac{\lambda}{2} \|f\|_{\mathcal{H}}^2$.
- Gradient:

$$\nabla R(f) = \mathbb{E}_{(x,y)} \left[l'(f(x),y)k(x,\cdot) \right] + \lambda f.$$

• Stochastic gradient: given $(x,y) \sim \mathbb{P}$

$$l'(f(x), y)k(x, \cdot) + \lambda f(\cdot) =: \xi(\cdot) + \lambda f(\cdot).$$

• Doubly stochastic gradient: given $(x,y) \sim \mathbb{P}$, $\omega \sim \mathbb{P}_{\Omega}$

$$I'(f(x), y)\phi_{\omega}(x)\phi_{\omega}(\cdot) + \lambda f(\cdot) =: \zeta(\cdot) + \lambda f(\cdot).$$

Functional gradient approximation: properties

 $\xi \in \mathcal{H}, \zeta \notin \mathcal{H}$, unbiasedness:

$$\xi(\cdot) = l'(f(x), y)k(x, \cdot) \in \mathcal{H},$$

$$\zeta(\cdot) = l'(f(x), y)\phi_{\omega}(x)\phi_{\omega}(\cdot) \notin \mathcal{H},$$

$$\xi(\cdot) = \mathbb{E}_{\omega}[\zeta(\cdot)],$$

$$\nabla R(f) = \mathbb{E}_{(x, y)}[\xi(\cdot)] + \lambda f(\cdot),$$

$$\nabla R(f) = \mathbb{E}_{(x, y)}\mathbb{E}_{\omega}[\zeta(\cdot)] + \lambda f(\cdot),$$

Functional gradient descent

- $\gamma_i > 0$: learning rates.
- Stochastic gradient descent $[(f_{i-1}, x_i, y_i, \gamma_i) \rightarrow f_i]$:

$$f_{i} = f_{i-1} - \gamma_{i} \nabla \hat{R}(f_{i-1}; x_{i}, y_{i})$$

$$= f_{i-1} - \gamma_{i} [l'(f_{i-1}(x_{i}), y_{i}) k(x_{i}, \cdot) + \lambda f_{i-1}]$$

$$= (1 - \gamma_{i} \lambda) f_{i-1} - \gamma_{i} l'(f_{i-1}(x_{i}), y_{i}) k(x_{i}, \cdot).$$

• Doubly stochastic gradient descent $[(f_{i-1}, x_i, y_i, \omega_i, \gamma_i) \rightarrow f_i]$:

$$f_{i} = f_{i-1} - \gamma_{i} [l'(f_{i-1}(x_{i}), y_{i}) \phi_{\omega_{i}}(x_{i}) \phi_{\omega_{i}}(\cdot) + \lambda f_{i-1}]$$

= $(1 - \gamma_{i}\lambda) f_{i-1} - \gamma_{i} l'(f_{i-1}(x_{i}), y_{i}) \phi_{\omega_{i}}(x_{i}) \phi_{\omega_{i}}(\cdot).$

Doubly stochastic gradient based f_i

Obtained update equation:

$$f_i = (1 - \gamma_i \lambda) f_{i-1} - \gamma_i I'(f_{i-1}(x_i), y_i) \phi_{\omega_i}(x_i) \phi_{\omega_i}(\cdot).$$

Assuming

$$f_i(\cdot) = \sum_{j=1}^i \beta_j \hat{k}(x_j, \cdot) = \sum_{j=1}^i \left[\beta_j \phi_{\omega_j}(x_j)\right] \phi_{\omega_j}(\cdot) =: \sum_{j=1}^i \alpha_j \phi_{\omega_j}(\cdot),$$

our $f_{i-1} \rightarrow f_i$ update (in terms of α_i -s) is

$$\alpha_i = -\gamma_i I'(f_{i-1}(x_i), y_i) \phi_{\omega_i}(x_i),$$

$$\alpha_j = (1 - \gamma_i \lambda) \alpha_j \quad (j = 1, \dots, i - 1).$$

Algorithm: Training

- Given $\{(x_i, y_i)\}_{i=1}^t [(x_i, y_i) \sim \mathbb{P}]$ compute $\{\alpha_i\}_{i=1}^t$.
- The RND number generation $(\Rightarrow \omega_i)$ is "cached" by seed i.

Algorithm 1 Train. $(\mathbb{P}, I, \lambda) \Rightarrow \{\alpha_i\}_{i=1}^t$.

$$\begin{aligned} & \text{for } i=1,\ldots,t \text{ do} \\ & \text{Sample } (x_i,y_i) \sim \mathbb{P}. \\ & \text{Sample } \omega_i \in P_{\Omega} \text{ using seed } i. \\ & f(x_i) = Predict(x_i,\{\alpha_j\}_{j=1}^{i-1}). \\ & \alpha_i = -\gamma_i l'(f(x_i),y_i)\phi_{\omega_i}(x_i). \\ & \alpha_j = (1-\gamma_i\lambda)\alpha_j \quad (j=1,\ldots,i-1). \end{aligned}$$

Algorithm: Predict

- Predict using the same seeds as in training ⇒
- There is no need to store ω_i -s.

Algorithm 2 Predict. $(x, \{\alpha_i\}_{i=1}^t) \Rightarrow f(x)$.

Initialization:
$$f(x) = 0$$
.

for
$$i = 1, \ldots, t$$
 do

Sample $\omega_i \in P_{\Omega}$ using seed i.

$$f(x) = f(x) + \alpha_i \phi_{\omega_i}(x).$$

Theoretical guarantees: conditions

- $\exists f_* = \operatorname{arg\,min}_{f \in \mathcal{H}} R(f)$.
- $I: \mathbb{R} \times \mathbb{R} \to \mathbb{R}$ Lipschitz continuous in $u: \exists L$ such that

$$|I(u,y)-I(u',y)|\leq L|u-u'| \quad (\forall u,u',y\in\mathbb{R}).$$

- Bounded I': $\exists B_I$ such that $|I'(f_i(x_i), y_i)| \leq B_I$.
- Bounded kernel, RND feature: $\exists B_k, B_\phi$ such that

$$k(x, x') \le B_k \quad (\forall x, x' \in \mathfrak{X}),$$
$$|\phi_{\omega}(x)\phi_{\omega}(x')| \le B_{\phi} \quad (\forall x, x' \in \mathfrak{X}, \omega \in \Omega).$$

Example (Gaussian k): $B_k = 1$, $B_{\phi} = 2$.

Theoretical guarantees: in human-readable format

Let
$$\gamma_i = \frac{\theta}{i}$$
 with $\theta > 0$, $D^t = \{(x_i, y_i)\}_{i=1}^t$, $\omega^t = \{\omega_i\}_{i=1}^t$.

• Convergence to the optimal function: for any $x \in \mathcal{X}$

$$\mathbb{E}_{D^t,\omega^t}\left[|f_{t+1}(x) - f_*(x)|^2\right] \le \frac{C_1}{t},$$

$$|f_{t+1}(x) - f_*(x)|^2 \lesssim \frac{C_2}{t} \text{ (with high probability)}.$$

• Generalization error (risk): let $R_{true} = \mathbb{E}_{(x,y)}[I(f(x),y)]$,

$$R_{true}(f_{t+1}) - R_{true}(f_*) \lesssim \frac{1}{\sqrt{t}}$$
 (with high probability).

High-level proof idea

Recall the f_t -update, and define h_t as

$$f_{t+1}(\cdot) = f_t - \gamma_t [\zeta_t(\cdot) + \lambda f_t(\cdot)] = \sum_{i=1}^t a_t^i \zeta_i(\cdot), \quad (t > 1), \quad f_1(\cdot) = 0,$$

$$a_t^i = -\gamma_i \prod_{j=i+1}^t (1 - \gamma_j \lambda),$$

$$h_{t+1}(\cdot) = \sum_{i=1}^t a_t^i \xi_i(\cdot) = h_t - \gamma_t [\xi_t(\cdot) + \lambda h_t(\cdot)] \quad (t > 1), \quad h_1(\cdot) = 0,$$

Since
$$\xi_i(\cdot) \in \mathcal{H}$$
, $h_t \in \mathcal{H}$ $(\forall t \geq 0)!$

High-level proof idea: $f_{t+1} - f_*$ through h_{t+1}

$$|f_{t+1}(x) - f_*(x)|^2 \le \underbrace{2|f_{t+1}(x) - h_{t+1}(x)|^2}_{\text{random functions}} + \underbrace{2\|h_{t+1} - f_*\|_{\mathcal{H}}^2 B_k}_{\text{random data}}.$$

High-level proof idea: $f_{t+1} - f_*$ through h_{t+1}

$$\begin{split} |f_{t+1}(x) - f_*(x)|^2 &= |f_{t+1}(x) - h_{t+1}(x) + h_{t+1}(x) - f_*(x)|^2 \\ &\leq 2 \left[|f_{t+1}(x) - h_{t+1}(x)|^2 + |h_{t+1}(x) - f_*(x)|^2 \right], \\ |h_{t+1}(x) - f_*(x)|^2 &= |\langle h_{t+1}, k(x, \cdot) \rangle_{\mathfrak{H}} - \langle f_*, k(x, \cdot) \rangle_{\mathfrak{H}}|^2 \\ &= |\langle h_{t+1} - f_*, k(x, \cdot) \rangle_{\mathfrak{H}}|^2 \\ &= [\|h_{t+1} - f_*\|_{\mathfrak{H}} \|k(x, \cdot)\|_{\mathfrak{H}}]^2 \\ &= \|h_{t+1} - f_*\|_{\mathfrak{H}}^2 \langle k(x, \cdot), k(x, \cdot) \rangle_{\mathfrak{H}} \\ &= \|h_{t+1} - f_*\|_{\mathfrak{H}}^2 k(x, x) \\ &\leq \|h_{t+1} - f_*\|_{\mathfrak{H}}^2 B_k. \Rightarrow \\ |f_{t+1}(x) - f_*(x)|^2 &\leq 2|f_{t+1}(x) - h_{t+1}(x)|^2 + 2\|h_{t+1} - f_*\|_{\mathfrak{H}}^2 B_k. \end{split}$$

High-level proof idea

• Tricky part (due to the random functions, our focus):

$$|f_{t+1}(x) - h_{t+1}(x)|^2$$
.

Second term: stoch. approximation in RKHS ("standard").

By the definitions of f_{t+1} and h_{t+1} :

$$f_{t+1}(x) - h_{t+1}(x) = \sum_{i=1}^t a_t^i [\zeta_i(x) - \xi_i(x)] =: \sum_{i=1}^t V_i(x).$$

 $\{V_i(x)\}_i$ is not i.i.d. (see a_t^i , f_i), but "almost" \Rightarrow Concentration.

Martingal, martingal difference

 M_0, M_1, M_2, \dots is martingal if

$$\mathbb{E}[|M_n|] < \infty, \quad (\forall n),$$

$$\mathbb{E}[M_{n+1}|M_n, \dots, M_1] = M_n, \quad (\forall n). \Leftrightarrow$$

$$\mathbb{E}[M_{n+1} - M_n|M_n, \dots, M_1] = 0, \quad (\forall n).$$

$$M_n = \sum_{i=1}^n V_i$$
. Example: random walk.

Martingal, martingal difference

 M_0, M_1, M_2, \dots is martingal if

$$\mathbb{E}[|M_n|] < \infty, \quad (\forall n),$$

$$\mathbb{E}[M_{n+1}|M_n, \dots, M_1] = M_n, \quad (\forall n). \Leftrightarrow$$

$$\mathbb{E}[M_{n+1} - M_n|M_n, \dots, M_1] = 0, \quad (\forall n).$$

 $V_n (= M_n - M_{n-1})$ is martingal difference if

$$\mathbb{E}[|V_n|] < \infty,$$

$$\mathbb{E}[V_n|V_{n-1},\ldots] = 0.$$

Equivalently, $M_n = \sum_{i=1}^n V_i$. Example: random walk.

Azuma-Hoeffding inequality

Let $\{V_i\}_i$ be a bounded martingal difference sequence $(|V_i| \le c_i)$. Then $\forall \epsilon > 0$

$$\mathbb{P}\left(\left|\sum_{i=1}^{t} V_{i}\right| \geq \epsilon\right) \leq 2e^{-\frac{\epsilon^{2}}{\sum_{i=1}^{t} c_{i}^{2}}}.$$

Let
$$V_i(x) = a_t^i [\zeta_i(x) - \xi_i(x)]$$
 (x: fixed). $V_i(x)$ is

bounded:

$$\begin{aligned} |\zeta_{i}(x) - \xi_{i}(x)| &= \left| l'(f_{i}(x_{i}), y_{i})k(x_{i}, x) - l'(f_{i}(x_{i}), y_{i})\phi_{\omega_{i}}(x_{i})\phi_{\omega_{i}}(x) \right| \\ &\leq \left| l'(f_{i}(x_{i}), y_{i}) \right| \left[|k(x_{i}, x)| + |\phi_{\omega_{i}}(x_{i})\phi_{\omega_{i}}(x)| \right] \\ &\leq B_{l}(B_{k} + B_{\phi}) \Rightarrow \\ |V_{i}| &\leq |a_{t}^{i}|B_{l}(B_{k} + B_{\phi}) =: c_{i}. \end{aligned}$$

② mart. difference: $\mathbb{E}[V_i(x)|V_{i-1}(x),...] = 0$ (\Leftarrow unbiasedness).

Azuma-Hoeffding inequality applied to $\{V_i(x)\}_i$

$$\mathbb{E}\left[|f_{t+1}(x) - h_{t+1}(x)|^2\right] = \mathbb{E}\left[\left|\sum_{i=1}^t V_i\right|^2\right] = \int_0^\infty \mathbb{P}\left(\left|\sum_{i=1}^t V_i\right|^2 \ge \epsilon\right) d\epsilon$$

$$\leq \int_0^\infty 2e^{-\frac{2\epsilon}{\sum_{i=1}^t c_i^2}} d\epsilon = \sum_{i=1}^t c_i^2$$

using with $Z \ge 0$ (F_Z : cdf of Z)

$$\mathbb{E}[Z] = \int_0^\infty 1 - F_Z(z) dz,$$

$$\mathbb{P}\left(\left|\sum_{i=1}^t V_i\right| \ge \epsilon\right) \le 2e^{-\frac{\epsilon^2}{\sum_{i=1}^t c_i^2}},$$

$$\int_0^\infty 2e^{-\frac{2\epsilon}{c}} d\epsilon = 2\left[-\frac{c}{2}e^{-\frac{2\epsilon}{c}}\right]_{\epsilon=0}^{\epsilon=\infty} = c.$$

ullet Thus, $\mathbb{E}\left[|f_{t+1}(x)-h_{t+1}(x)|^2
ight]\leq \sum_{i=1}^t c_i^2$, where

$$c_i = |a_t^i|B_l(B_k + B_\phi), \qquad a_t^i = -\gamma_i \prod_{j=i+1}^t (1 - \gamma_j \lambda).$$

- Freedom in the choice of γ_i !
- If $\gamma_i = \frac{\theta > 0}{i}$, where $\theta \lambda \in (1,2) \cup \mathbb{Z}^+$, then (induction) $|a_t^i| \leq \frac{\theta}{t}$.
- In this case

$$\sum_{i=1}^{t} |a_t^i|^2 \le \sum_{i=1}^{t} \frac{\theta^2}{t^2} = \frac{\theta^2}{t},$$

$$\mathbb{E}\left[|f_{t+1}(x) - h_{t+1}(x)|^2\right] \leq [B_l(B_k + B_\phi)]^2 \frac{\theta^2}{t} = O\left(\frac{1}{t}\right).$$

Three gradient terms:

$$g_{t} := \xi_{t} + \lambda h_{t} = l'(f_{t}(x_{t}), y_{t})k(x_{t}, \cdot) + \lambda h_{t},$$

$$\hat{g}_{t} := \hat{\xi}_{t} + \lambda h_{t} := l'(h_{t}(x_{t}), y_{t})k(x_{t}, \cdot) + \lambda h_{t},$$

$$\bar{g}_{t} := \mathbb{E}[\hat{g}_{t}] = \mathbb{E}[l'(h_{t}(x_{t}), y_{t})k(x_{t}, \cdot)] + \lambda h_{t}.$$

- By the definition of h_{t+1} : $h_{t+1} = h_t \gamma_t g_t \ (t \ge 1)$.
- Recursion to $A_{t+1} = \|h_{t+1} f_*\|_{\mathcal{H}}^2$, and to its expectation $e_t = \mathbb{E}[A_t] = \mathbb{E}\left[\|h_t f_*\|_{\mathcal{H}}^2\right]$. This gives $e_t = \mathcal{O}\left(\frac{1}{t}\right)$, similarly.

Generalization error

$$\begin{split} R_{true}(f_{t+1}) - R_{true}(f_*) &= \mathbb{E}_{(x,y)} \left[l(f_{t+1}(x),y) \right] - \mathbb{E}_{(x,y)} \left[l(f_*(x),y) \right] \\ &= \mathbb{E}_{(x,y)} \left[l(f_{t+1}(x),y) - l(f_*(x),y) \right] \\ &\leq \mathbb{E}_{(x,y)} \left[L|f_{t+1}(x) - f_*(x)| \right] \\ &= L \mathbb{E}_x |(f_{t+1}(x) - f_*(x)| \\ &= L \sqrt{\mathbb{E}_x |(f_{t+1}(x) - f_*(x)|^2} = L \left\| f_{t+1} - f_* \right\|_2. \end{split}$$

Similarly to the previous proof:

$$\|f_{t+1} - f_*\|_2^2 \le c_1 \|f_{t+1} - h_{t+1}\|_2^2 + c_2 \|h_{t+1} - f_*\|_{\mathcal{H}}^2$$

Numerical experiences

- Problems: SVM, ridge regression, logistic regression.
- Baselines:
 - online kernel algorithms (NORMA, SDCA, Pegasos).
 - deep learning heuristics.
- Experience:
 - Similar performance, less computation/memory.
 - Mini-batching is useful.

Thank you for the attention!

Subgradient of a convex function

• Let $f: U \to \mathbb{R}$ be a convex function (U: convex). A vector v is called a *subgradient* of f at x_0 if

$$f(x) - f(x_0) \ge \langle v, x - x_0 \rangle \quad (\forall x \in U).$$

• $\partial f(x_0)$: Non-empty, convex, compact set.